Skip to main content

Part of the book series: Springer Series on Wave Phenomena ((SSWAV,volume 13))

  • 327 Accesses

Abstract

The decisive effect which the British invention of radar (at first called “asdic”) had in the latter part of World War II on the outcome of that war, is very well known and understood. Military applications have spurred the huge subsequent development of the radar industry, although civilian radar applications such as air and sea traffic control, remote sensing, meteorological radar, etc. also had a large share. Radar targets were detected by their echoes, and their location was determined from the travel time of a radar pulse. Their trajectory could be followed along, and the Doppler effect was also used to gauge radial motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.E. Baum: “On the Singularity Expansion Method for the solution of electromagnetic interaction problems,” Interaction Note No. 88, Dec. 11, 1971, Kirtland Air Force Base, Albuquerque, NM; see also C.E. Baum: “The Singularity Expansion Method,” in Transient Electromagnetic Fields, ed. by L.B. Felsen, Topics Appl. Phys., Vol. 10 (Springer, Berlin, Heidelberg 1976) pp. 129-17

    Google Scholar 

  2. D.L. Moffat, R.K. Mains: “Detection and Discrimination of Radar Targets,” IEEE Trans. AP-15, 358–367 (1975)

    ADS  Google Scholar 

  3. M.L. Van Blaricum, R. Mittra: “Problems and solutions associated with Prony’s method for processing transient data,” IEEE Trans. AP-26, 174–193 (1978)

    Article  ADS  Google Scholar 

  4. E.K. Miller, A.J. Poggio, G.J. Burke: “An integro-differential equation technique for the time-domain analysis of thin wire structures: I. The numerical method,” J. Comput. Phys. 12, 24–28 (1973)

    Article  ADS  MATH  Google Scholar 

  5. R. Prony: “Essai expérimental et analytique sur les lois de la dilatabilité des fluides élastiques et sur celles de la force expansive de la vapeur de l’eau et de la vapeur de l’alcool, à différentes températures,” J. l’Ecole Polytechnique (Paris) 1, 24–76 (1795)

    Google Scholar 

  6. C. Huygens: Traité de la Lumière (Leyden, Holland 1690)

    Google Scholar 

  7. S.K. Chaudhury, W.M. Boerner, “Polarization utilization in profile inversion of a perfectly conducting prolate spheroid,” IEEE Trans. AP-25, 505–511 (1977)

    ADS  Google Scholar 

  8. G. Sinclair, “The transmission and reception of elliptically polarized waves,” Proc. IRE, 38, 148–151 (1950); E.M. Kennaugh: “Polarization properties of radar reflections,” M.Sc. thesis, Dept. of Electr. Eng., Ohio State University, Columbus, OH (1952)

    Article  Google Scholar 

  9. P.P. Delsanto, J.D. Alemar, E. Rosario, A. Nagl, H. Überall, “Spectral analysis of the scattering of elastic waves from a fluid-filled cylinder,” Materials Eval. 46, 1000–1005 (1988)

    ADS  Google Scholar 

  10. H. Batard, G. Quentin: “Acoustical resonances of solid elastic cylinders: Parametric study and introduction to the inverse problem,” J. Acoust. Soc. Am. 91, 581–590 (1992)

    Article  ADS  Google Scholar 

  11. L. Flax, L.R. Dragonette, H. Überall: “Theory of elastic resonance excitation by sound scattering,” J. Acoust. Soc. Am. 63, 723–731 (1978)

    Article  ADS  MATH  Google Scholar 

  12. See, e.g., H. Überall (ed.): Acoustic Resonance Scattering (Gordon and Breach, New York 1992)

    Google Scholar 

  13. H. Überall, L.R. Dragonette, L. Flax: “Relation between creeping waves and normal modes of vibration of a curved body,” J. Acoust. Soc. Am. 61, 711–715 (1977)

    Article  ADS  Google Scholar 

  14. T.K. Sarkar, J. Nebat, D.D. Weiner, V.K. Jain: “Suboptimal approximation/identification of transient waveforms from electromagnetic systems by pencil-of-function method,” IEEE Trans. AP-28, 928–933 (1980); T.K. Sarkar, D.D. Weiner, J. Nebat, V.K. Jain: “A discussion of various approaches to the identification /approximation problem,” IEEE Trans. AP-30, 89-98 (1982)

    Google Scholar 

  15. K.J. Langenberg: “Introduction to the Special Issue on Inverse Problems,” Wave Motion, 11, 99–112(1989)

    Article  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Überall, H. (1994). Introduction. In: Boerner, WM., Überall, H. (eds) Radar Target Imaging. Springer Series on Wave Phenomena, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85112-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85112-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85114-8

  • Online ISBN: 978-3-642-85112-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics