Skip to main content

Detection of Measles Virus in Subacute Sclerosing Panencephalitis Brain Tissue

  • Chapter
Diagnosis of Human Viruses by Polymerase Chain Reaction Technology

Part of the book series: Frontiers of Virology ((FRVIROLOGY,volume 1))

  • 127 Accesses

Summary

Subacute selerosing panencephalitis (SSPE) is a progressive human neurologic disorder caused by reactivation of latent measles virus in the central nervous system (CNS). Prevalence of the disorder is linked to the age, sex, race and measles vaccination status of affected individuals. Onset is gradual, with subtle clinical symptoms initially and diffuse neurologic signs later. Death ensues within months to years. Pathologically, the brain shows widespread but patchy inflammation, necrosis and gliosis with inclusion bodies in the gray and white matter. Diagnosis of SSPE is made through measurement of elevated titers of anti-measles antibodies in the serum and cerebrospinal fluid. Adaptation of polymerase chain reaction (PCR) to RNA genomic systems by the application of reverse transcriptase as a preliminary step (RT/PCR) provides a novel method of detecting measles genome in SSPE tissue with a high degree of sensitivity and specificity. Using primer pairs designed to amplify segments of all 5 major structural protein genes of measles virus, RT/PCR was used to amplify these genes in RNA extracted from frozen and formalin-fixed, paraffin-embedded SSPE brain tissue but not in RNA from control brain tissue. The sensitivity of this technique is enhanced by using internal (nesting) primers and a second round of amplification. The products generated by RT/ PCR may be sequenced directly after minimal processing to increase the information obtained using this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alkhatib G, Briedis DJ (1986) The predicted primary structure of the measles virus hemagglutinin. Virology 150:479–490

    Article  PubMed  CAS  Google Scholar 

  • Asher DM (1991) Slow viral infections of the human nervous system. In: Scheid WM, Whitley RJ, Durack DT (eds) Infections of the central nervous system. Raven, New York, pp 145–166

    Google Scholar 

  • Bangham CRM, Nightingale S, Cruickshank JK, Daenke S (1989) PCR analysis of DNA from multiple sclerosis patients for the presence of HTLV-1. Science 246:821–824

    CAS  Google Scholar 

  • Bellini WJ, Englund G, Rozenblatt S, Arnheiter H et al. (1985) Measles virus P gene codes for two proteins. J Virol 53:908–919

    PubMed  CAS  Google Scholar 

  • Bellini WJ, Englund G, Richardson CD, Rozenblatt S et al. (1986) Matrix genes of measles virus and canine distemper virus: cloning, nucleotide sequences, and deduced amino acid sequences. J Virol 58:408–416

    PubMed  CAS  Google Scholar 

  • Ben-Ezra J, Johnson DA, Rossi J, Cook N et al. (1991) Effect of fixation on the amplification of nucleic acids from paraffin-embedded material by the polymerase chain reaction. J Histochem Cytochem 39:351–354

    Article  PubMed  CAS  Google Scholar 

  • Bouteille M, Fontaine C, Vedrenne C, Delarue J (1965) Sur un cas d’encéphalite subaiguë à inclusions. Etude anatomo-clinique et ultrastructurale. Rev Neurol (Paris) 113:454–458

    Google Scholar 

  • Brown P, Cathala F, Gajdusek DC, Gibbs CJ Jr (1971) Measles antibodies in the cerebrospinal fluid of patients with multiple sclerosis. Proc Soc Exp Biol Med 137:956–961

    PubMed  CAS  Google Scholar 

  • Buckland R, Gerald C, Barker R, Wild TF (1987) Fusion glycoprotein of measles virus: nucleotide sequence of the gene and comparison with other paramyxoviruses. J Gen Virol 68:1695–1703

    Article  PubMed  CAS  Google Scholar 

  • Budka H, Lassmann H, Popow-Kraupp T (1982) Measles virus antigen in panencephalitis: an immunomorphological study stressing dendritic involvement in SSPE. Acta Neuropathol (Berl) 56:52–62

    Article  CAS  Google Scholar 

  • Cape CA, Martinez AJ, Robertson JT, Hamilton R et al. (1973) Adult onset of subacute sclerosing panencephalitis. Arch Neurol 28:124–127

    Article  PubMed  CAS  Google Scholar 

  • Cattaneo R, Schmid A, Billeter MA, Sheppard RD et al. (1988) Multiple viral mutations rather than host factors cause defective measles virus gene expression in a subacute sclerosing panencephalitis cell line. J Virol 62:1388–1397

    PubMed  CAS  Google Scholar 

  • Centers for Disease Control (1982) Subacute sclerosing panencephalitis surveillance — United States. MMWR 31:585–588

    Google Scholar 

  • Chen TT, Watanabe I, Zeman W, Mealey J (1969) Subacute sclerosing panencephalitis: propagation of measles virus from brain biopsy in tissue culture. Science 163:1193–1194

    Article  PubMed  CAS  Google Scholar 

  • Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299

    Article  PubMed  CAS  Google Scholar 

  • Cobb W (1966) The periodic events of subacute sclerosing leucoencephalitis. Electroencephalogr Clin Neurophysiol 21:278–294

    Article  PubMed  CAS  Google Scholar 

  • Connolly JH, Allen IV, Hurwitz LJ, Millar JHD (1967) Measles-virus antibody and antigen in subacute sclerosing panencephalitis. Lancet 1:542–544

    Article  PubMed  CAS  Google Scholar 

  • Crowley J, Dowling P, Menonna J, Schanzer B et al. (1987) Molecular cloning of 99% of measles viras genome, positive identification of 5’ end clones, and mapping of the L gene region. Intervirology 28:65–77

    Article  PubMed  CAS  Google Scholar 

  • Dawson JR (1933) Cellular inclusions in cerebral lesions of lethargic encephalitis. Am J Pathol 9:7–16

    PubMed  CAS  Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395

    Article  PubMed  CAS  Google Scholar 

  • DuRant RH, Dyken PR (1983) The effect of inosiplex on the survival of subacute sclerosing panencephalitis. Neurology 33:1053–1055

    PubMed  CAS  Google Scholar 

  • Dyken PR (1985) Subacute sclerosing panencephalitis: current status. Neurol Clin 3:179–196

    PubMed  CAS  Google Scholar 

  • Elizan TS, Casal J (1983) The viral hypothesis in Parkinsonism. J Neural Transm Suppl 19:75–88

    PubMed  CAS  Google Scholar 

  • Fournier JG, Tardieu M, Lebon P, Robain O et al. (1985) Detection of measles virus RNA in lymphocytes from peripheral-blood and brain perivascular infiltrates of patients with subacute sclerosing panencephalitis. N Engl J Med 313:910–915

    Article  PubMed  CAS  Google Scholar 

  • Godec MS, Asher DM, Swoveland PT, Eldadah ZA et al. (1990) Detection of measles virus genomic sequences in SSPE brain tissue by the polymerase chain reaction. J Med Virol 30:237–244

    Article  PubMed  CAS  Google Scholar 

  • Godec MS, Asher DM, Murray RS, Shin ML et al. (1992) Absence of measles, mumps and rubella viral genomic sequences from multiple sclerosis brain tissue by polymerase chain reaction. Ann Neurol (in press)

    Google Scholar 

  • Gonzalez-Scarano F, Nathanson N (1985) Viral etiology of multiple sclerosis: a critique of the evidence. In: Maramorosch K, McKelvey JJ Jr (eds) Subviral pathogens of plants and animals: viroids and prions. Academic, Orlando, pp 465–481

    Google Scholar 

  • Gréer CE, Peterson SL, Kiviat NB, Manos MM (1991) PCR amplification from paraffin-embedded tissues. Am J Clin Pathol 95:117–124

    PubMed  Google Scholar 

  • Halsey NA, Modlin JF, Jabbour JT, Dubey L et al. (1980) Risk factors in subacute sclerosing panencephalitis: a case-control study. Am J Epidemiol 111:415–424

    PubMed  CAS  Google Scholar 

  • Horta-Barbosa L, Fuccillo DA, Sever JL, Zeman W (1969) Subacute sclerosing panencephalitis: isolation of measles virus from a brain biopsy. Nature 221:974

    Article  PubMed  CAS  Google Scholar 

  • Jabbour JT, Garcia JH, Lemmi H, Ragland J et al. (1969) Subacute sclerosing panencephalitis: a multidisciplinary study of eight cases. JAMA 207:2248–2254

    Article  PubMed  CAS  Google Scholar 

  • Jabbour JT, Duenas DA, Modlin J (1975) SSPE: clinical staging, course, and frequency, 1975. Arch Neurol 32:493–494

    Google Scholar 

  • Jones CE, Dyken PR, Huttenlocher PR, Jabbour JT et al. (1982) Inosiplex therapy in subacute sclerosing panencephalitis: a multicentre, non-randomized study in 98 patients. Lancet 1:1034–1037

    Article  PubMed  CAS  Google Scholar 

  • Kascsak RJ, Carp RI, Vilcek JT, Donnenfeld H et al. (1982) Virological studies in amyotrophic lateral sclerosis. Muscle Nerve 5:93–101

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann CA, Weinberger DR, Yolken RH, Torrey EF et al. (1983) Viruses and schizophrenia. Lancet 2:1136–1137

    Article  PubMed  CAS  Google Scholar 

  • Kwok S, Higuchi R (1989) Avoiding false positives with PCR. Nature 339:237–238

    Article  PubMed  CAS  Google Scholar 

  • Li H, Gyllensten UB, Cui X, Saiki RK et al. (1988) Amplification and analysis of DNA sequences in single human sperm and diploid cells. Nature 335:414–417

    Article  PubMed  CAS  Google Scholar 

  • Modlin JF, Halsey NA, Eddins DL, Conrad JL et al. (1979) Epidemiology of subacute sclerosing panencephalitis. J Pediatr 94:231–236

    Article  PubMed  CAS  Google Scholar 

  • Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–350

    Article  PubMed  CAS  Google Scholar 

  • Mullis K, Faloona F, Scharf S, Saiki R et al. (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symp Quant Biol 51:263–273

    PubMed  CAS  Google Scholar 

  • Payne FE, Baublis JV, Itabashi HH (1969) Isolation of measles virus from cell cultures of brain from a patient with subacute sclerosing panencephalitis. NEJM 281:585–589

    Article  PubMed  CAS  Google Scholar 

  • Rozenblatt S, Eizenberg O, Ben-Levy R, La Vie V et al. (1985) Sequence homology within the morbilliviruses. J Virol 53:684–690

    PubMed  CAS  Google Scholar 

  • Rupp GM, Locker J (1988) Purification and analysis of RNA from paraffin-embedded tissues. BioTechniques 6:56–60

    Article  PubMed  CAS  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf S J et al. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    Article  PubMed  CAS  Google Scholar 

  • Sever JL (1983) Persistent measles infection of the central nervous system: subacute sclerosing panencephalitis. Rev Infect Dis 5:467–473

    Article  PubMed  CAS  Google Scholar 

  • Shibata DK, Arnheim N, Martin WJ (1988) Detection of human papilloma virus in paraffinembedded tissue using the polymerase chain reaction. J Exp Med 167:225–230

    Article  PubMed  CAS  Google Scholar 

  • Torrey EF (1988) Stalking the schizovirus. Schizophr Bull 14:223–229

    PubMed  CAS  Google Scholar 

  • Wechsler SL, Meissner HC (1982) Measles and SSPE viruses: similarities and differences. Prog Med Virol 28:65–95

    PubMed  CAS  Google Scholar 

  • Zhdanov VM (1975) Integration of viral genomes. Nature 256:471–473

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Godec, M.S. (1992). Detection of Measles Virus in Subacute Sclerosing Panencephalitis Brain Tissue. In: Becker, Y., Darai, G. (eds) Diagnosis of Human Viruses by Polymerase Chain Reaction Technology. Frontiers of Virology, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84766-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84766-0_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84768-4

  • Online ISBN: 978-3-642-84766-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics