Skip to main content

Physiological functions of vacuoles in yeast: Mechanism of sequestration of metabolites and proteins into vacuoles

  • Conference paper
Molecular Biology and its Application to Medical Mycology

Part of the book series: NATO ASI Series ((ASIH,volume 69))

Abstract

Vacuoles are the largest compartment in yeast cells, occupying about 25% of the total cell volumes. Vacuoles contain mainly low molecular weight solutes and ions, but quite small amount of proteins. Recent studies revealed that vacuoles are not inert organelles as previously thought, but play important roles on maintaining homeostasis of cytosol in many respects. Last 15 years we have been making efforts to understand the structure and function of vacuoles in yeast, Saccharomyces cerevisiae, by taking several different approaches, as described below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Achstetter T, Wolf DH (1985) Proteinases, proteolysis and biological control in the yeast Saccharomyces cerevisiae. Yeast 1:139–157.

    Article  PubMed  CAS  Google Scholar 

  • Anraku Y, Umemoto N, Hirata R, Wada Y (1989) Structure and function of the yeast vacuolar membrane proton ATPase. J. Bioenerg. Biomembr. 21:589–603.

    Article  PubMed  CAS  Google Scholar 

  • Henomatsu N, Yoshimori T, Moriyama Y, Futai M, Tashiro Y (1990) Effect of Bafilomycin A1 on intracellular distribution of prolactin in the GH3 rat pituitary tumor cells. Cell Struct. Funct. 15:447.

    Google Scholar 

  • Jones EW (1984) The synthesis and function of proteinases in Saccharomyces cerevisiae: genetic approaches. Annu. Rev. Genet. 18:233–270.

    Article  PubMed  CAS  Google Scholar 

  • Kakinuma Y, Ohsumi Y, Anraku Y (1981)Properties of H+-translocating ATPase in vacuolar membrane of Saccharomyces cerevisiae. J. Biol. Chem. 256:10859–10863.

    PubMed  CAS  Google Scholar 

  • Kitamoto K, Yoshizawa K, Ohsumi Y, Anraku Y (1988) Dynamic aspects of vacuolar and cytosolic amino acid pools of Saccharomyces cerevisiae. J. Bacteriol. 170:2683–2686.

    PubMed  CAS  Google Scholar 

  • Kitamoto K, Yoshizawa K, Ohsumi Y, Anraku Y (1988) Mutants of Saccharomyces cerevisiae with defective vacuolar function. J. Bacteriol. 170:2687–2691.

    PubMed  CAS  Google Scholar 

  • Klionsky DJ, Herman PK, Emr SD (1990) The fungal vacuole: Composition, function, and biogenesis. Microbiol. Rev. 54:266–292.

    PubMed  CAS  Google Scholar 

  • Klionsky DJ, Banta LM, Emr SD (1988) Intracellular sorting and processing of a yeast vacuolar hydrolase: proteinase A propeptide contains vacuolar targeting information. Mol. Cell. Biol. 8:2105–2116.

    PubMed  CAS  Google Scholar 

  • Matile P (1975) The lytic compartment of plant cells. Cell Biology Monographs, Vol. 1, Springer-Verlag, Wien, New York.

    Google Scholar 

  • Ohsumi Y, Anraku Y (1981) Active transport of basic amino acids driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae. J. Biol. Chem. 256:2079–2082.

    PubMed  CAS  Google Scholar 

  • Ohsumi Y, Anraku Y (1983) Calcium transport driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae. J. Biol. Chem. 258:5614–5617.

    PubMed  CAS  Google Scholar 

  • Ohsumi Y, Anraku Y (1985) Specific induction of Ca2+ transport activity in MATa cells of Saccharomyces cerevisiae by a mating pheromone a factor. J. Biol. Chem. 269:10482–10486.

    Google Scholar 

  • Ohsumi Y, Kitamoto K, Anraku Y (1988) Changes induced in thepermeability barrier of the yeast plasma membrane by cupric ion. J. Bacteriol. 170:2676–2682.

    PubMed  CAS  Google Scholar 

  • Rothman JH, Yamashiro CT, Raymond CK, Kane PM, Stevens TH (1989) Acidification of the lysosome-like vacuole and vacuolar H+-ATPase are deficient in two yeast mutants that fail to sort vacuolar proteins. J. Cell. Biol. 109:93–100.

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Ohsumi Y, Anraku, Y (1984) Substrate specificities of active transport systems for amino acids in vacuolar membrane vesicles of Saccharomyces cerevisiae. J. Biol. Chem. 259:11505–11508.

    PubMed  CAS  Google Scholar 

  • Uchida E, Ohsumi Y, Anraku Y (1985) Purification and properties of H+-translocating, Mg2+-adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J. Biol. Chem. 260:1090–1095.

    PubMed  CAS  Google Scholar 

  • Uchida E, Ohsumi Y, Anraku Y (1988) Characterization and function of catalytic subunit a of H+-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J. Biol. Chem. 263: 45–51.

    PubMed  CAS  Google Scholar 

  • Wada Y, Ohsumi Y, Tanifuji M, Kasai M, Anraku Y (1987) Vacuolar ion channel of the yeast, Saccharomyces cerevisiae. J. Biol. Chem. 262:17260–17263.

    PubMed  CAS  Google Scholar 

  • Wiemken A, Schellenberg M, Urech K (1979) Vacuoles: the sole compartments of digestive enzymes in yeast (Saccharomyces cerevisiae. Arch. Microbiol. 123:23–35.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ohsumi, Y. (1993). Physiological functions of vacuoles in yeast: Mechanism of sequestration of metabolites and proteins into vacuoles. In: Maresca, B., Kobayashi, G.S., Yamaguchi, H. (eds) Molecular Biology and its Application to Medical Mycology. NATO ASI Series, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84625-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84625-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84627-4

  • Online ISBN: 978-3-642-84625-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics