Skip to main content

The heat shock response of Neurospora crassa

  • Conference paper
Molecular Biology and its Application to Medical Mycology

Part of the book series: NATO ASI Series ((ASIH,volume 69))

  • 155 Accesses

Abstract

Nearly every type of cell in all organisms responds to the stress of sublethal heat shock with a major redirection of gene expression that helps to protect the cell against still higher, lethal temperatures (Lindquist, 1986; Lindquist & Craig, 1988). The molecular basis of this heat shock response, as well as responses to certain other physical stresses, centers about rapid synthesis of a unique set of mRNAs and their translation into the characteristic heat shock proteins. At the same time, normal gene transcription becomes repressed, and translation of normal mRNAs is reduced or discontinued. For most plants and microorganisms, this response to high temperature is transient, and they resume normal transcription and translation after a certain period of time at the heat shock temperature, presumably after accumulating sufficient amounts of the heat shock proteins (Lindquist, 1986). Numerous experiments have shown that cells that are exposed to a sublethal heat shock become more resistant to lethally high temperatures, as well as certain other stresses, and the proteins that cells synthesize during heat shock appear, in most cases, to be required for their increased thermotolerance (Plesofsky-Vig & Brambl, 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arrigo A-P, Suhan JP, Welch WJ (1988) Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock proteins. Mol. Cell. Biol. 8:5059–5071.

    PubMed  CAS  Google Scholar 

  • Bardwell JCA, Craig EA (1984) Major heat shock gene of Drosophila and the Escherichia coli heat inducible dnaK gene are homologous. Proc. Natl. Acad. Sci. USA 81:848–852.

    Article  PubMed  CAS  Google Scholar 

  • Bardwell JCA, Craig EA (1987) Eukaryotic M 83,000 heat shock protein has a homologue in Escherichia coli. Proc. Natl. Acad. Sci. USA 84:5177–5181.

    Article  CAS  Google Scholar 

  • Bond U, Schlesinger MJ (1985) Ubiquitin is a heat shock protein in chicken embryo fibroblasts. Mol. Cell. Biol. 5:949–956.

    PubMed  CAS  Google Scholar 

  • Chappell TG, Welch WJ, Schlossman DM, Palter KB, Schlesinger MJ, Rothman JE (1986) Uncoating ATPase is a member of the 70 kilodalton family of stress proteins. Cell 45:3–13.

    Article  PubMed  CAS  Google Scholar 

  • Cheng JY, Hartl F-U, Martin J, Pollock RA, Kalousek F, Neupert W, Hallberg EM, Hallberg RL, Horwich, AL (1989) Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337:620–625.

    Article  PubMed  CAS  Google Scholar 

  • Chou M, Chen Y-M, Lin C-Y (1989) Thermotolerance of isolated mitochondria associated with heat shock proteins. Plant Physiol. 89:617–621.

    Article  PubMed  CAS  Google Scholar 

  • Craig EA, Kramer J, Shilling J, Werner-Washburne, M, Holmes S, Kosic-Smithers J, Nicolet CM (1989) SSC1, an essential member of the yeast HSP70 multigene family, encodes a mitochondrial protein. Mol. Cell. Biol. 9:3000–3008.

    PubMed  CAS  Google Scholar 

  • Deshaies RJ, Koch BD, Werner-Washburne M, Craig EA, Schekman R (1988) 70kd stress protein homologues facilitate translocation of secretory and mitochondrial precursor polypeptides. Nature 332:800–805.

    Article  PubMed  CAS  Google Scholar 

  • Flynn GC, Chappell TG, Rothman JE (1989) Peptide binding and release by proteins implicated as catalysts of protein assembly. Science 245:385–390.

    Article  PubMed  CAS  Google Scholar 

  • Gottesman S, Squires C, Pichersky E, Carrington M, Hobbs M, Mattick JC, Dalrymple B, Kuramitsu H, Shiroza T, Foster T, Clark WP, Ross B, Squires CL, Maurizi MR (1990) Conservation of the regulatory subunit for the Clp ATP-dependent protease in prokaryotes and eukaryotes. Proc. Natl. Acad. Sci. USA 87:3513–3517.

    Article  PubMed  CAS  Google Scholar 

  • Habel D, Plesofsky-Vig N, Brambl R (1991) The respiratory response to heat shock in Neurospora crassa. FEMS Microbiol. Lett. 81:317–322.

    Article  Google Scholar 

  • Hemmingsen SM, Woolford C, van der Vies SM, Tilly K, Dennis DT (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333:330–334.

    Article  PubMed  CAS  Google Scholar 

  • Hill EP, Plesofsky-Vig N, Paulson A, Brambl R (1992) Respiration and gene expression in germinating ascospores of Neurospora tetrasperma. FEMS Microbiol. Lett 90:111–116.

    Article  CAS  Google Scholar 

  • Hopf N, Plesofsky-Vig N, Brambl R (1992) The heat shock response of pollen and other tissues of maize Plant Mol. Biol. (In press).

    Google Scholar 

  • Ingolia TD, Craig EA (1982) Four small Drosophila heat shock proteins are related to each other and to mammalian α-crystallin. Proc. Natl. Acad. Sci. USA 79:2360–2364.

    Article  PubMed  CAS  Google Scholar 

  • Johnsson N, Marriott G, Weber K (1988) p36, the major cytoplasmic substrate of src tyrosine protein kinase, binds to its pl 1 regulatory subunit via a short amino-terminal amphiphatic helix. EMBO J. 7:2435–2442.

    PubMed  CAS  Google Scholar 

  • Kloppstech K, Meyer G, Schuster G, Ohad I (1985) Synthesis, transport and localization of a nuclear coded 22-kd heat-shock protein in the chloroplast membranes of peas and Chlamydomonas reinhardi EMBO J. 4:1901–1909.

    PubMed  CAS  Google Scholar 

  • Kurtz S, Rossi J, Petko L, Lindquist S (1986) An ancient development induction: heat-shock proteins induced in sporulation and oogenesis. Science 231:1154–1157.

    Article  PubMed  CAS  Google Scholar 

  • Leicht BG, Biessmann H, Palter KB, Bonner JJ (1986) Small heat shock proteins of Drosophila associate with the cytoskeleton. Proc. Natl. Acad. Sci. USA 83:90–94.

    Article  PubMed  CAS  Google Scholar 

  • Lindquist, SL (1986) The heat-shock response. Annu. Rev. Biochem. 55:1151–1191.

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677.

    Article  PubMed  CAS  Google Scholar 

  • Marshall JS, DeRocher AE, Keegstra K, Vierling E (1990) Identification of heat shock protein hsp70 homologues in chloroplasts. Proc. Natl. Acad. Sci. USA 87:374–378.

    Article  PubMed  CAS  Google Scholar 

  • Maiti M, Masahiro K, Chakrabarti B (1988) Heat-induced changes in the conformation of the α-and β-crystallins: unique thermal stability of α-crystallin. FEBS Lett. 236:109–114.

    Article  PubMed  CAS  Google Scholar 

  • Munro S, Pelham HRB (1986) An HSP70-like protein in the ER: identity with the 78kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46:291–300.

    Article  PubMed  CAS  Google Scholar 

  • Nerland AH, Mustafa AS, Sweetser D, Godal T, Young RA (1988) A protein antigen of Mycobacterium leprae is related to a family of small heat shock proteins. J Bacteriol. 170:5919–5921.

    PubMed  CAS  Google Scholar 

  • Neves MJ, Jorge JA, Francois JM, Terenzi HF (1991) Effects of heat shock on the level of trehalose and glycogen, and on the induction of thermotolerance in Neurospora crassa. FEBS Lett. 283:19–22.

    Article  PubMed  CAS  Google Scholar 

  • Nover L, Scharf K-D, Neumann D (1983) Formation of cytoplasmic heat shock granules in tomato cell cultures and leaves. Mol. Cell. Biol. 3:1648–1655.

    PubMed  CAS  Google Scholar 

  • Oppermann H, Levinson W, Bishop JM (1981) A cellular protein that associates with the transforming protein of Rous sarcoma virus is also a heat shock protein. Proc. Natl. Acad. Sci. USA 78:1067–1071.

    Article  PubMed  CAS  Google Scholar 

  • Ostermann J, Horwich AL, Neupert W, Hartl F-U (1989) Protein folding in mitochondria requires complex formation with hsp60 and ATP hydrolysis. Nature 341:125–130.

    Article  PubMed  CAS  Google Scholar 

  • Parsell DA, Sanchez Y, Stitzel JD, Lindquist S (1991) Hsp104 is a highly conserved protein with two essential nucleotide-binding sites. Nature 353:270–273.

    Article  PubMed  CAS  Google Scholar 

  • Pelham HRB (1984) HSP70 accelerates the recovery of nucleolar morphology after heat shock. EMBO J. 3:3095–3100.

    PubMed  CAS  Google Scholar 

  • Pelham HRB (1986) Speculations on the functions of the major heat shock and glucose regulated proteins. Cell 46:959–961.

    Article  PubMed  CAS  Google Scholar 

  • Petko L, Lindquist S (1986) Hsp26 is not required for growth at high temperatures, nor for thermotolerance, spore development, or germination. Cell 45:885–894.

    Article  PubMed  CAS  Google Scholar 

  • Pinelli E, Shapira M (1990) Temperature-induced expression of proteins in Leishmania mexicana amazonensis. Eur. J. Biochem. 194:685–691.

    Article  PubMed  CAS  Google Scholar 

  • Plesofsky-Vig N, Brambl R (1985) Heat shock response of Neurospora crassa: protein synthesis and induced thermotolerance. J. Bacteriol. 162:1083–1091.

    PubMed  CAS  Google Scholar 

  • Plesofsky-Vig N, Brambl R (1987) Two developmental stages of Neurospora crassa utilize similar mechanisms for responding to heat shock but contrasting mechanisms for recovery. Mol. Cell. Biol. 7:3041–3048.

    PubMed  CAS  Google Scholar 

  • Plesofsky-Vig N, Brambl R (1990) Gene sequence and analysis of hsp30, a small heat shock protein of Neurospora crassa which associates with mitochondria. J. Biol. Chem. 265:15432–15440.

    PubMed  CAS  Google Scholar 

  • Plesofsky-Vig N, Paulson, A, Hill EP, Glaser L, Brambl R (1992a) Heat shock gene expression in germinating ascospores of Neurospora tetrasperma. FEMS Microbiol. Lett 90:107–112.

    Article  Google Scholar 

  • Plesofsky-Vig N, Vig J, Brambl R (1992b) Phylogeny of the α-crystallin-related heat shock proteins J. Mol. Evol. (In press).

    Google Scholar 

  • Riehl RM, Sullivan WP, Vroman BT, Bauer VJ, Pearson GR, Toft DO (1985) Immunological evidence that the nonhormone binding component of avian steroid receptors exists in a wide range of tissues and species. Biochemistry 24: 6586–6591.

    Article  PubMed  CAS  Google Scholar 

  • Rossi JM, Lindquist S (1989) Intracellular location of hsp26 in yeast cells varies with metabolism. J. Cell. Biol. 108: 425–439.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez ER, Toft DO, Schlesinger MJ, Pratt WB (1985) Evidence that the 90-kDa phosphoprotein associated with the untransformed L-cell glucocorticoid receptor is a murine heat shock protein. J. Biol. Chem. 260: 12398–12401.

    PubMed  CAS  Google Scholar 

  • Susek RE, Lindquist SL (1989) hsp26 of Saccharomyces cerevisiae is related to the superfamily of small heat shock proteins but is without a demonstrable function. Mol. Cell. Biol. 9: 5265–5271.

    PubMed  CAS  Google Scholar 

  • Vassilev AO, Plesofsky-Vig N, Brambl R (1992) Isolation, partial amino acid sequence, and cellular distribution of heat shock protein hsp98 from Neurospora crassa. submitted.

    Google Scholar 

  • Vierling E, Nagao RT, DeRocher AE, Harris LM (1988) A heat shock protein localized to chloroplasts is a member of a eukaryotic superfamily of heat shock proteins. EMBO J. 7:575–581.

    PubMed  CAS  Google Scholar 

  • Wilhelmsson A, Cuthill S, Denis M, Wikström A-C, Gustafsson J-A, Poellinger L (1990) The specific DNA binding activity of the dioxin receptor is modulated by the 90 kd heat shock protein. EMBO J. 9: 69–76.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Plesofsky-Vig, N., Brambl, R. (1993). The heat shock response of Neurospora crassa . In: Maresca, B., Kobayashi, G.S., Yamaguchi, H. (eds) Molecular Biology and its Application to Medical Mycology. NATO ASI Series, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84625-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84625-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84627-4

  • Online ISBN: 978-3-642-84625-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics