Skip to main content

Part of the book series: NATO ASI Series ((ASIH,volume 69))

  • 159 Accesses

Abstract

The cell cycle has undergone major advances in the last four years. A better understanding of how cells divide has been possible thanks to the fusion of two independent areas of research, one exploiting fungal genetics and molecular biology in Schizosaccharomyces pombe, Saccharomyces cerevisiae and Aspergillus nidulans, and the second based on biochemistry in Xenopus and mammalian cell lines. Here we review how the genes involved in the control of the cell cycle in fission yeast were discovered and how their gene products interact with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arion, D, Meijer, L, Brizuela, L, Beach, D (1988) cdc2 is a component of the M phase-specific histone H1 kinase: evidence for identity with MPF. Cell 55: 371–378.

    Article  PubMed  CAS  Google Scholar 

  • Booher, RN, Alfa, CE, Hyams, JS, Beach, DH (1989) The fission yeast cdc2/cdcl3/ suc 1 protein kinase: regulation of catalytic activity and nuclear localization. Cell 58: 485–497.

    Article  PubMed  CAS  Google Scholar 

  • Draetta, G (1990) Cell cycle control in eukaryotes: molecular mechanisms of cdc2 activation. Trends Biochem Sci 15: 378–383.

    Article  PubMed  CAS  Google Scholar 

  • Draetta, G, Beach, D (1988) Activation of cdc2 protein kinase during mitosis in human cells: cell cycle-dependent phosphorylation and subunit rearrangement. Cell 54: 17–26.

    Article  PubMed  CAS  Google Scholar 

  • Dunphy, WG, Brizuela, L, Beach, D, Newport, J (1988) The Xenopus homolog of cdc2 is a component of MPF, a cytoplasmic regulator of mitosis. Cell 54: 423–431.

    Article  PubMed  CAS  Google Scholar 

  • Dunphy, WG, Kumagai A (1991) The cdc25 protein contains an intrinsic phosphatase activity. Cell: 189-196.

    Google Scholar 

  • Enoch, T, Nurse, P (1991) Coupling M phase and S phase: Controls maintaining the dependence of mitosis on chromosome replication. Cell 65: 921–923.

    Article  PubMed  CAS  Google Scholar 

  • Gautier, J, Norbury, C, Lohka, M, Nurse, P, Maller, J (1988) Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2+. Cell 54: 433–439.

    Article  PubMed  CAS  Google Scholar 

  • Gautier, J, Solomon, MJ, Booher, RN, Bazan, JF, Kirschner, MW (1991) cdc25 is a specific tyrisine phosphatase that directly activates p34cdc2. Cell 67:197–211.

    Article  PubMed  CAS  Google Scholar 

  • Gould, KL, Moreno, S, Owen, DJ, Sazer, S, Nurse, P (1991) Phosphorylation at Thr 167 is required for Schizosaccharomyces pombe p34cdc2 function. EMBO J. 10: 3297–3309.

    PubMed  CAS  Google Scholar 

  • Gould, KL, Nurse, P (1989) Tyrosine phosphorylation of the fission yeast cdc2 protein kinase regulates entry into mitosis. Nature 342: 39–45.

    Article  PubMed  CAS  Google Scholar 

  • Labbe, JC, Lee, MG, Nurse, P, Picard, A, Doree, M (1988) Activation at M-phase of a protein kinase encoded by a starfish homologue of the cell cycle control gene cdc2+. Nature 335: 251–254.

    Article  PubMed  CAS  Google Scholar 

  • Lundgren, K, Walworth, N, Booher, R, Dembski, M, Kirschner, M, Beach, D (1991) mik1 and wee 1 cooperate in the inhibitory tyrosine phosphoiylation of cdc2. Cell 64: 1111–1122.

    Article  PubMed  CAS  Google Scholar 

  • Moreno, S, Hayles, J, Nurse, P (1989) Regulation of p34cdc2 protein kinase during mitosis. Cell 58: 361–372.

    Article  PubMed  CAS  Google Scholar 

  • Moreno, S, Nurse, P (1990) Substrates for p34cdc2: in vivo veritas? Cell 61: 549–551.

    Article  PubMed  CAS  Google Scholar 

  • Moreno, S, Nurse, P (1991) Clues to action of cdc25 protein. Nature 351: 194.

    Article  PubMed  CAS  Google Scholar 

  • Nurse, P, Bissett, Y (1981) Gene required in Gl for commitment to cell cycle and in G2 for control of mitosis in fission yeast. Nature 292: 558–560.

    Article  PubMed  CAS  Google Scholar 

  • Russell, P, Nurse, P (1987) Negative regulation of mitosis by wee1+ a gene encoding a protein kinase homolog. Cell 49: 559–567.

    Article  PubMed  CAS  Google Scholar 

  • Strausfeld, U, Labbé, J-C, Fesquet, D, Cavadore, JC, Picard, A, Sadhu, K, Russell, P, Dorée, M (1991) Dephosphorylation and activation of a p34cdc2/cyclin B complex in vitro by human CDC25 protein. Nature 351: 242–245.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moreno, S., Nurse, P. (1993). Cell cycle regulation in fission yeast. In: Maresca, B., Kobayashi, G.S., Yamaguchi, H. (eds) Molecular Biology and its Application to Medical Mycology. NATO ASI Series, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84625-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84625-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84627-4

  • Online ISBN: 978-3-642-84625-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics