Skip to main content

Current Directions in Mathematical Learning Theory

  • Chapter
Mathematical Psychology in Progress

Part of the book series: Recent Research in Psychology ((PSYCHOLOGY))

Abstract

The first part of this article surveys different current trends in mathematical learning theory. The main divisions of the subject covered are stimulus-response theory, language learning, formal learning theory, perceptrons, cellular automata, and neural networks. The second part is concerned with extending the ideas of stimulus-response theory to universal computation. This is done by using register machines rather than Turing machines. The main theorem is that any partial recursive function can be asymptotically learned by a register learning model. In the discussion of this result the emphasis is on the need for a carefully organized hierarchy of concepts in order to have a rate of learning that is realistic for either organisms or machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baianu, I. C. (1986). Computer models and automata theory in biology and medicine. Mathematical Modeling, 7, 1513–1577.

    Article  Google Scholar 

  • Burks, A. W. (Ed.) (1984). Essays on cellular automata. Urbana, IL: University of Illinois Press.

    Google Scholar 

  • Burks, C., and Farmer, D. (1984). Towards modelling DNA sequences as automata. In D. Farmer, T. Toffoli, and S. Wolfram (Eds.), Cellular Automata (Proceedings of an interdisciplinary Workshop, Los Alamos, New Mexico, March 7–11, 1983, pp. 157–167 ). Amsterdam: North-Holland.

    Google Scholar 

  • Bush, R., and Mosteller, F. (1955). Stochastic models for learning. New York: Wiley.

    Google Scholar 

  • Codd, E. F. (1968). Cellular automata. New York: Academic Press.

    Google Scholar 

  • Crangle, C. and Suppes P. (1989). Instruction dialogues: Teaching new skills to a robot. In G. Rodrigues (Ed.), Proceedings of the NASA Conference on Space Telerobotics(January 31 — February 2, 1989, Pasadena, California). Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California.

    Google Scholar 

  • Crick, F., and Asanuma, C. (1986). Certain aspects of the anatomy and physiology of the cerebral cortex. In J. L. McClelland, D. E. Rumelhart, and the PDP Research Group (Eds.), Parallel distributed processing. Explorations in the microstructures of cognition. Vol. 2. Psychological and biological models(pp. 333–371). Cambridge, MA, and London: Massachusetts Institute of Technology Press.

    Google Scholar 

  • Ehrenfeucht, A., and Mycielski, J. (1973a). Interpolation of functions over a measure space and conjectures about memory. Journal of Approximation Theory, 9, 218–236.

    Article  Google Scholar 

  • Ehrenfeucht, A., and Mycielski, J. (1973b). Organisation of memory. Proceedings of the National Academy of Sciences U.S.A., 70, 1478–1480.

    Article  Google Scholar 

  • Ehrenfeucht, A., and Mycielski, J. (1977). Learnable functions. In R. E. Butts and J. Hintikka (Eds.), Foundational problems in the special sciences, Proceedings of the Fifth International Congress of Logic, Methodology and Philosophy of Science, London, Ontario, Canada, (Vol. 2, pp. 251–256 ). Dordrecht, Holland: Reidel.

    Google Scholar 

  • Estes, W. K. (1950). Toward a statistical theory of learning. Psychological Review, 57, 94–107.

    Article  Google Scholar 

  • Gold, E. M. (1967). Language identification in the limit. Information and Control, 10, 447–474.

    Article  Google Scholar 

  • Grossberg, S. (1974). Classical and instrumental learning by neural networks. In R. Rosen and F. Snell (Eds.), Progress in theoretical biology. New York: Academic Press.

    Google Scholar 

  • Grossberg, S. (1978). A theory of visual coding, memory, and development. In E. L. J. Leeuwenberg and H. F. J. M. Buffart (Eds.), Formal theories of visual perception(pp. 726). New York: Wiley.

    Google Scholar 

  • Grossberg, S. (1980). How does a brain build a cognitive code? Psychological Review, 87, 1–51.

    Article  PubMed  Google Scholar 

  • Grossberg, S. (1982). Associative and competitive principles of learning and development: The temporal unfolding and stability of STM and LTM patterns. In S. Aman and M. A. Arbib (Eds.), Competition and cooperation in neural nets. Lecture Notes in Biomathernatics, 45, 295–341.

    Google Scholar 

  • Grossberg, S., and Kuperstein, M. (1986). Neural dynamics of adaptive sensory-motor control. Advances in Psychology 30. Amsterdam: North-Holland.

    Google Scholar 

  • Hamburger, H., and Wexler, K. (1973). Identifiability of a class of transformational grammars. In K. J. J. Hintikka, J. M. E. Moravcsik, and P. Suppes (Eds.), Approaches to natural language(pp. 153–166). Dordrecht, Holland: D. Reidel.

    Chapter  Google Scholar 

  • Hamburger, H., and Wexler, K. (1975). A mathematical theory of learning transformational grammar. Journal of Mathematical Psychology, 12, 137–177.

    Article  Google Scholar 

  • Harrison, M.A. (1965). Introduction to Switching and Automata Theory. New York: McGraw-Hill.

    Google Scholar 

  • Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: University of Michigan Press.

    Google Scholar 

  • Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79, 2554–2558.

    Article  Google Scholar 

  • Hopfield, J. J., and Tank, D. W. (1985). “Neural” computation of decisions in optimization problems. Biological Cybernetics, 52, 141–152.

    PubMed  Google Scholar 

  • Hull, C. L. (1943). Principles of behavior. New York: Appleton.

    Google Scholar 

  • Hull, C. L., Hovland, C. I., Ross, R. T., Hall, M., Perkins, D. T., and Fitch, F. B. (1940). Mathernatico-deductive theory of rote learning. New Haven, CT: Yale University Press.

    Google Scholar 

  • Kandel, E. R. (1985). Cellular mechanisms of learning and the biological basis of individuality. In E. R. Kandel and J. H. Schwartz (Eds.), Principles of neural science(2nd ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Kanerva, P. (1988). Space distributed memory. Cambridge, MA: Massachusetts Institute of Technology Press.

    Google Scholar 

  • Kaplan, R. M., and Bresnan, J. (1982). Lexical-functional grammar: a formal system for grammatical representation. In J. Bresnan (Ed.), The mental representation of grammatical relations. Cambridge, MA: Massachusetts Institute of Technology Press.

    Google Scholar 

  • Kauffman, S. A. (1984). Emergent properties in random complex automata. In D. Farmer, T. Toffoli, and S. Wolfram (Eds.), Cellular automata(Proceedings of an Interdisciplinary Workshop, Los Alamos, New Mexico, March 7–11, 1983, pp. 145–156). Amsterdam: North-Holland.

    Google Scholar 

  • Kieras, D. E. (1976). Finite automata and S-R models. Journal of Mathematical Psychology, 6, 127–147.

    Article  Google Scholar 

  • Langton, C. G. (1984). Self-reproduction in cellular automata. Physica, 10D, 135–144.

    Google Scholar 

  • Reprinted in D. Farmer, T. Toffoli, and S. Wolfram (Eds.), Cellular automata (Proceedings of an Interdisciplinary Workshop, Los Alamos, New Mexico, March 7–11, 1983, pp. 135–144). Amsterdam: North-Holland.

    Google Scholar 

  • McCulloch, W. S., and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115–133.

    Article  Google Scholar 

  • Minsky, M., and Papert, S. (1969). Perceptrons. Cambridge, MA: Massachusetts Institute of Technology Press.

    Google Scholar 

  • Myhill, J. (1970). The abstract theory of self-reproduction. In A. W. Burks (Ed.), Essays on cellular automata (pp. 206–218). Urbana, IL: University of Illinois Press.

    Google Scholar 

  • Newell, A. (1980) Physical symbol systems. Cognitive Science, 4, 135–183.

    Article  Google Scholar 

  • Osherson, D. N., Stob, M., and Weinstein, S. (1986). Systems that learn. Cambridge, MA: Massachusetts Institute of Technology Press.

    Google Scholar 

  • Pinker, S. (1984). Language learnability and language development. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Pinker, S. and Mehler J. (Eds.) (1988). Connections and Symbols. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Rosenblatt, F. (1959). Two theorems of statistical separability in the perceptron(Proceedings of a symposium on the mechanization of thought processes). London: HM Stationery Office.

    Google Scholar 

  • Rumelhardt, D. E., McClelland, J. L., and the PDP Research Group. (1986). Parallel distributed processing: Explorations in the microstructures of cognition(2 vols.). Cambridge, MA: Massachusetts Institute of Technology Press.

    Google Scholar 

  • Shepherdson, J. C., and Sturgis, H. E. (1963). The computability of partial recursive functions. Journal of the Association of Computing Machinery, 10, 217–255.

    Article  Google Scholar 

  • Suppes, P. (1969). Stimulus-response theory of finite automata. Journal of Mathematical Psychology, 6, 327–355.

    Article  Google Scholar 

  • Suppes, P. (1977a). A survey of contemporary learning theories. In R. E. Butts and J. Hintikka (Eds.), Foundational problems in the special sciences(Part two of the Proceedings of the Fifth International Congress of Logic, Methodology and Philosophy of Science, London, Ontario, Canada, 1975, pp. 217–239 ). Dordrecht, Holland: D. Reidel.

    Google Scholar 

  • Suppes, P. (1977b). Learning theory for probabilistic automata and register machines. In H. Spada and W. F. Kempf (Eds.), Structural models of thinking and learning(Proceedings of the 7th IPN-Symposium on Formalized Theories of Thinking and Learning and their Implications for Science Instruction, pp. 57–79). Bern: Hans Huber Publishers.

    Google Scholar 

  • Suppes, P. (1983). Learning language in the limit, review of K. Wexler and P. W. Culicover, Formal principles of language acquisition. Contemporary Psychology, 28, 5–6.

    Google Scholar 

  • Suppes, P., and Rottmayer, W. Automata. (1974). In E. C. Carterette and M. P. Friedman (Eds.), Handbook of perception(Vol. 1, pp. 335–362). New York: Academic Press.

    Google Scholar 

  • Suppes, P., Rouanet, H., Levine, M., and Frankmann, R. W. (1964). Empirical comparison of models for a continuum of responses with noncontingent bimodal reinforcement. In R. C. Atkinson (Ed.), Studies in mathematical psychology(pp. 358–379 ). Stanford, CA: Stanford University Press.

    Google Scholar 

  • Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society, London, Series B 237, 37 - 72.

    Article  Google Scholar 

  • von Neumann, J. (1966). Theory of self-reproducing automata, edited by A. W. Burks. Urbana, IL: University of Illinois Press.

    Google Scholar 

  • Wexler, K., and Culicover, P. W. (1980). Formal principles of language acquisition. Cambridge, MA, and London, England: Massachusetts Institute of Technology Press.

    Google Scholar 

  • Wolfram, S. (1985). Undecidability and intractability in theoretical physics. Physical Review Letters, 54, 735–738.

    Article  PubMed  Google Scholar 

  • Wolfram, S. (1986). Random sequence generation by cellular automata. Advances in Applied Mathematics, 7, 123–169.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Suppes, P. (1989). Current Directions in Mathematical Learning Theory. In: Roskam, E.E. (eds) Mathematical Psychology in Progress. Recent Research in Psychology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83943-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83943-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51686-6

  • Online ISBN: 978-3-642-83943-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics