Skip to main content

Structure and Ultrastructure of the Dental Pulp

  • Chapter
Teeth

Part of the book series: Handbook of Microscopic Anatomy ((1668,volume 5 / 6))

Abstract

The dental pulp is a richly innervated and vascularized, loose connective tissue. As previously mentioned, the study of the dental pulp cannot be disassociated from that of dentine, since one of the principal functions of the pulpal tissue is, in fact, the elaboration of dentine. This is accomplished through the activity of the peripheral pulpal cells, the odontoblasts, which are an integral part of both tissues. From a histological and anatomical point of view, the dental pulp has classically been described as having three main regions, the peripheral odontoblastic layer, the sub-odontoblastic layer, and the central pulp. These zones form a continuum however (Figs. 1, 2), and in the radicular pulp, near the root apex, such zones are less apparent. According to BAUME (1980), the important relationship between dentine and pulp was first recognized in the mid 19th century by, among others, KOLLIKER (1852) and TOMES (1856).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amerongen JP van (1984) The extracellular matrix of dental pulp. A biochemical study. Doctoral Thesis, University Utrecht

    Google Scholar 

  • Amerongen JP van, Lemmens IG, Tonino GJM (1983) The concentration, extractability and characterization of collagen in human dental pulp. Arch Oral Biol 28:339–345

    PubMed  Google Scholar 

  • Amerongen JP van, Lemmens IG, Tonino GJM (1984) Immunofluorescent localization and extractability of fibronectin in human dental pulp. Arch Oral Biol 29:93–99

    PubMed  Google Scholar 

  • Anderson DJ (1963) Chemical and osmotic excitants of pain in human dentin. In: Anderson DJ (ed) Sensory mechanisms in dentine. Pergamon, Oxford, p 88

    Google Scholar 

  • Anderson DJ, Matthews B (1967) Osmotic stimulation of human dentin and the distribution of dental pain thresholds. Arch Oral Biol 12:417–426

    PubMed  CAS  Google Scholar 

  • Anderson DJ, Rönning GA (1962) Osmotic excitants of pain in human dentin. Arch Oral Biol 7:513–523

    PubMed  CAS  Google Scholar 

  • Anneroth G, Norberg KA (1968) Adrenergic vasoconstrictor innervation in the human pulp. Acta Odontal Scand 26:89–93

    CAS  Google Scholar 

  • Antila R, Pohto P (1984) In vitro studies on the prostaglandin system in tooth pulp. Proc Finn Dent Soc 80:245–252

    PubMed  CAS  Google Scholar 

  • Aoba T, Ebisu S, Yagi T (1980) A study of the mineral phase of pulp calcification. J Oral Pathol 9:129–136

    PubMed  CAS  Google Scholar 

  • Arwill T (1967) Studies on the ultrastructure of dental tissues. II. The predentine-pulpal border zone. Odont Revy 18:191–208

    CAS  Google Scholar 

  • Arwill T (1968) The ultrastructure of the pulpo-dentinal border zone. In: Symons NBB (ed) Dentine and pulp: their structure and reactions. Livingstone, London, pp 147–167

    Google Scholar 

  • Arwill T, Edwall L, Lilja J, Olgart L, Svenson SE (1973) Ultrastructure of nerves in dentinal-pulp border zone after sensory and autonomic transection in the cat. Acta Odontol Scand 31:273–278

    PubMed  CAS  Google Scholar 

  • Ashhurst DE, Costin NM (1976) The secretion of collagen by insects: uptake of 3H-proline by collagen-synthesizing cells in Locusta migratoria and Galleria mellonella. J Cell Sci 20:377–403

    PubMed  CAS  Google Scholar 

  • Avery JK (1963) A possible mechanism of pain conduction in teeth. Ann Histochem 8:59–64

    CAS  Google Scholar 

  • Avery JK (1971) Structural elements of the young normal human pulp. Oral Surg 32:113–125

    PubMed  CAS  Google Scholar 

  • Avery JK (1976) Dentin. In: Bhaskar SN (ed) Orban’s oral histology and embryology, 8th edn. Mosby, St Louis, pp 105–140

    Google Scholar 

  • Avery JK, Rapp R (1959) An investigation of the mechanism of neural impulse transmission in human teeth. Oral Surg 12:190–198

    PubMed  CAS  Google Scholar 

  • Avery JK, Strachnan DS, Corpron RE, Cox CF (1971) Morphological studies of the altered pulp of the New Zealand white rabbit after resection of the inferior alveolar nerve and/or the superior cervical ganglion. Anat Rec 171:495–508

    PubMed  CAS  Google Scholar 

  • Avery JK, Cox CF, Chiego DJ (1980) Presence and location of adrenergic nerve endings in the dental pulps of mouse molars. Anat Rec 198:59–71

    PubMed  CAS  Google Scholar 

  • Avery JK, Cox CF, Chiego DJ (1984) Structural and physiological aspects of dentin innervation. In: Linde A (ed) Dentin and dentinogenesis, vol I. CRC Press, Boca Raton, pp 19–46

    Google Scholar 

  • Baume LJ (1980) The biology of pulp and dentine: a historic terminologic, taxonomic, histological, biochemical and clinical survey. Monograph in Oral Sciences. Karger, Basel

    Google Scholar 

  • Beasley WL, Holland GR (1978) A quantitative analysis of the innervation of the pulp of the cat’s canine tooth. J Comp Neurol 178:487–494

    PubMed  CAS  Google Scholar 

  • Beersten W, Everts V, Hoff van den A (1974) Fine structure of flbrobasts in the periodontal ligament of the rat incisor and their role in tooth eruption. Arch Oral Biol 19:1087–1098

    Google Scholar 

  • Bell C (1829) Anatomy and physiology of the human body, 7th edn, vol I. Longman, Rees, Orme, Brow and Green, London, p 236

    Google Scholar 

  • Bennett CG, Kelln EE, Biddington WR (1965) Age changes of the vascular pattern of the human dental pulp. Arch Oral Biol 10:995–998

    PubMed  CAS  Google Scholar 

  • Benninghoff A (1923) tJber die Formenreihe der glatten Muskulatur und die Bedeutung der Rougetschen Zellen an den Capillaren. Z Zellforsch Mikrosk Anat 4:125–170

    Google Scholar 

  • Bensadoun R (1976) “Contribution à l’étude de l’innervation de la dentine par la technique autoradiographique chez le chat et le rat”; Thèse Doct 3ème cycle Sciences Odont, Université Paris V

    Google Scholar 

  • Bernick S (1948) Innervation of the human tooth. Anat Rec 101:81–107

    PubMed  CAS  Google Scholar 

  • Bernick S (1967) Effect of aging on the nerve supply to human teeth. J Dent Res 46:694–699

    PubMed  CAS  Google Scholar 

  • Bernick S (1968) Innervation of the teeth. In: Finn SB (ed) Biology of the dental pulp organ: a symposium. University of Alabama Press, Birmingham, pp 284–302

    Google Scholar 

  • Bernick S (1977) Lymphatic vessels of the human dental pulp. J Dent Res 56:70–77

    PubMed  CAS  Google Scholar 

  • Bernick S, Pattek PR (1969) Lymphatic vessels of the dental pulp in dogs. J Dent Res 48:959–964

    PubMed  CAS  Google Scholar 

  • Beveridge EE, Brown AC (1965) The measurement of human dental intrapulpal pressure and its response to clinical variables. Oral Surg 19:655–668

    PubMed  CAS  Google Scholar 

  • Bhussry BR (1968) Modification of the dental pulp organ during development and aging. In: Finn SB (ed) Biology of the dental pulp organ: a symposium. University of Alabama Press, Birmingham, pp 144–165

    Google Scholar 

  • Bishop MA (1982) A fine structural investigation on the extent of perineural investment of the nerve supply to the pulp in rat molar teeth. Arch Oral Biol 27:225–234

    PubMed  CAS  Google Scholar 

  • Bishop MA (1985) Vascular permeability to lanthanum in the rat incisor pulp. Comparison with endoneurial vessels in the inferior alveolar nerve. Cell Tissue Res 239:131–136

    PubMed  CAS  Google Scholar 

  • Boström H, Odeblad E (1953) The influence of cortisone upon the sulphate exchange of chondroitin sulfuric acid. Arkiv Demi 6:39–42

    Google Scholar 

  • Bradamante Z, Pecina-Hrncevic A, Ciglar I (1980) Oxytalan fibres in human dental pulp. Experientia 36:1210–1211

    PubMed  CAS  Google Scholar 

  • Brännström M (1960a) Dentinal and pulpal response. I. Application of reduced pressure to exposed dentin. Acta Odontol Scand 18:1–15

    Google Scholar 

  • Brännström M (1960b) Dentinal and pulpal response. II. Application of an air stream to exposed dentin. Short observation period. Acta Odontol Scand 18:17–28

    Google Scholar 

  • Brännström M (1962) The elicitation of pain in the human dentin and pulp by chemical stimulation. Arch Oral Biol 7:59–62

    PubMed  Google Scholar 

  • Brännström M (1963) Dentine sensitivity and aspiration of odontoblasts. J Am Dent Assoc 66:366–370

    PubMed  Google Scholar 

  • Brännström M (1966) Sensitivity of dentine. Oral Surg 21:517–526

    PubMed  Google Scholar 

  • Brännström M (1981) Dentin and pulp in restorative dentistry, 1st edn. Dental Ther, Nacka

    Google Scholar 

  • Brännström M, Astrom A (1964) A study on the mechanism of pain elicited from the dentine. J Dent Res 43:619–625

    Google Scholar 

  • Brännström M, Astrom A (1972) The hydrodynamics of the dentine: its possible relationship to dentinal pain. Int Dent J 22:219–227

    PubMed  Google Scholar 

  • Brännström M, Linden KLA, Astrom A (1967) The hydrodynamics of the dental tubule and of pulp fluid. A discussion of its significance in relation to dentinal sensitivity. Caries Res 1:310–317

    PubMed  Google Scholar 

  • Brännström M, Johnson G, Linden LA (1969) Fluid flow and pain response in the dentine produced by hydrostatic pressure. Odont Revy 20:15–30

    Google Scholar 

  • Byers MR (1980) Development of sensory innervation in dentine. J Comp Neurol 191:413–427

    PubMed  CAS  Google Scholar 

  • Byers MR (1984a) Dental sensory receptors. In: Smythies JR, Bradley RJ (eds) Int Rev Neurobiol, vol 25. Academic, Orlando, pp 39–94

    Google Scholar 

  • Byers MR (1984b) “Autoradiographic mapping of receptive fields of individual sensory axons in dentine and pulp”. Abstract of the satellite symposium to the fourth world congress on pain: recent developments in oro-facial pain. Basic and Clinical Research. Port Ludlow, Washington, September

    Google Scholar 

  • Byers MR, Dong W (1983) Autoradiographic location of sensory nerve endings in dentin of monkey teeth. Anat Rec 205:441–454

    PubMed  CAS  Google Scholar 

  • Byers MR, Holland GR (1977) Trigeminal endings in gingiva, junctional epithelium and periodontal ligament of rat molars as demonstrated by autoradiography. Anat Rec 188:509–524

    PubMed  CAS  Google Scholar 

  • Byers MR, Kish SJ (1976) Delineation of somatic nerve endings in rat teeth by radioautography of axon-transported protein. J Dent Res 55:419–425

    PubMed  CAS  Google Scholar 

  • Byers MR, Matthews B (1981) Autoradiographic demonstration of ipsilateral and controlateral sensory nerve endings in cat dentin, pulp and periodontium. Anat Rec 201:249–260

    PubMed  CAS  Google Scholar 

  • Byers MR, Neuhans SJ, Gehrig JD (1982) Dental sensory receptor structure in human teeth. Pain 13:231–235

    Google Scholar 

  • Cahen PM, Frank RM (1970) Microscopie electronique de la pulpe dentaire humaine normale. Bull Group Int Rech Sci Stomatol Odontol 13:421–443

    CAS  Google Scholar 

  • Calle A, Magloire H, Joffre A (1985) Intercellular junctions in human tooth-pulp cells in culture in vitro revealed by freeze fracture, lanthanum impregnation and filipin treatment. Arch Oral Biol 30:283–289

    PubMed  CAS  Google Scholar 

  • Casley-Smith J, Florey JW (1961) The structure of normal small lymphatics. QJ Exp Physiol 46:101–106

    CAS  Google Scholar 

  • Cho MI, Garant PR (1981a) Sequential events in the formation of collagen secretion granules with special reference to the development of segment-long-spacing-like aggregates. Anat Rec 199:309–320

    PubMed  CAS  Google Scholar 

  • Cho MI, Garnat PR (1981b) Role of microtubules in the organization of the Golgi complex and the secretion of collagen secretory granules by periodontal ligament fibroblasts. Anat Rec 199:459–471

    PubMed  CAS  Google Scholar 

  • Cho MI, Garant PR (1981c) An electron microscopy radioautographic study of collagen secretion in periodontal ligament fibroblasts of the mouse: I. Normal fibroblasts. Anat Rec 201:577–586

    CAS  Google Scholar 

  • Connor NS, Aubin JE, Melcher AH (1984) The distribution of fibronectin in rat tooth and periodontal tissues: an immunofluorescence study using a monoclonal antibody. J Histochem Cytochem 32:565–572

    PubMed  CAS  Google Scholar 

  • Corpron RE, Avery JK (1973) The ultrastructure of intradentinal nerves in developing mouse molars. Anat Rec 175:585–606

    PubMed  CAS  Google Scholar 

  • Corpron RE, Avery JK, Cox CF (1972) Ultrastructure of intradentinal nerves after resection of the inferior alveolar nerve in mice. J Dent Res 51:673

    PubMed  CAS  Google Scholar 

  • Corpron RE, Avery JK, Lee SD (1973) Ultrastructure of capillaries in the odontoblastic layer. J Dent Res 52:393

    PubMed  CAS  Google Scholar 

  • Cournil I, Leblond CP, Pomponio J, Hand AR, Sederlof L, Martin GR (1979) Immunohistochemical localization of procollagens. I. Light microscopic distribution of procollagen I, III and IV. Antigenicity in the rat incisor tooth by the indirect peroxidase-antiperoxidase method. J Histochem Cytochem 27:1059–1069

    PubMed  CAS  Google Scholar 

  • Dahl E, Mjor IA (1973a) Tlie structure and distribution of nerves in the pulp-dentin organ. Acta Odontol Scand 31:349–354

    PubMed  CAS  Google Scholar 

  • Dahl E, Mjor IA (1973b) The fine structure of the vessels in the human dental pulp. Acta Odontol Scand 31:223–230

    Google Scholar 

  • Dewey K, Noyes FB (1917) A study of the lymphatic vessels of the dental pulp. Dent Cosmos 59:436–444

    Google Scholar 

  • Droz B (1967) Synthese et transfert des proteines cellulaires dans les neurones ganglionnaires. Etude radioautographique quantitative en microscopie electronique. J Microsc 6:201–228

    CAS  Google Scholar 

  • Droz B, Leblond CP (1963) Axonal migration of proteins in the central nervous system and peripheral nerves as shown by radioautography. J Comp Neurol 121:325–346

    PubMed  CAS  Google Scholar 

  • Ekblom A, Hansson P (1984) A thin and freeze fracture study of the pulp blood vessels in feline and human teeth. Arch Oral Biol 29:413–424

    PubMed  CAS  Google Scholar 

  • Ellingson JS, Smith M (1975) Phospholipid composition of rat, rabbit and bovine dental pulp. Arch Oral Biol 20:731–734

    PubMed  CAS  Google Scholar 

  • Erlanger J, Gasser HS (1938) Electrical signs and nervous activity, 1st edn. Pennsylvania Press, Philadelphia

    Google Scholar 

  • Fearnhead RW (1957) Histological evidence for the innervation of human dentine. J Anat 91:267–277

    PubMed  CAS  Google Scholar 

  • Fearnhead RW (1961) The neurohistology of human dentine. Proc Roy Soc Lond [Biol] 54:884–887

    Google Scholar 

  • Fearnhead RW (1963) The histological demonstration of nerve fibres in human dentine. In: Anderson DJ (ed) Sensory mechanisms in dentine. Pergamon, Oxford, p 15

    Google Scholar 

  • Fearnhead RW (1967) Innervation of dental tissues. In: Miles AEW (ed) Structural and chemical organization of teeth, vol I. Academic, New York, pp 247–281

    Google Scholar 

  • Fink R, Kish SJ, Byers MR (1975) Rapid axonal transport in trigeminal nerve of rat. Brain Res 90:85–95

    PubMed  CAS  Google Scholar 

  • Fish EW (1925) Circulation of lymph in the dentine. Proc Roy Soc Med 18:35–37

    PubMed  CAS  Google Scholar 

  • Fish EW (1927) The lymph supply of the dentine and enamel. Proc Roy Soc Med 20:225–236

    PubMed  CAS  Google Scholar 

  • Fox AG, Heeley JD (1981) Histological study of pulps of human primary teeth. Arch Oral Biol 25:103–110

    Google Scholar 

  • Frank RM (1966a) Etude au microscope electronique de l’odontoblaste et du canalicule dentinaire humain. Arch Oral Biol 11:179–199

    PubMed  CAS  Google Scholar 

  • Frank RM (1966b) Ultrastructure of human dentine. In: Fleisch H, Blackwood HJJ, Owen M (eds) Third Eur Symp Calcified Tissues. Springer, Berlin, pp 259–271

    Google Scholar 

  • Frank RM (1968a) Ultrastructural relationship between the odontoblast, its process and the nerve fibre. In: Symons NBB (ed) Dentine and pulp: their structure and reactions. Livingstone, London, pp 115–145

    Google Scholar 

  • Frank RM (1968b) Attachment sites between the odontoblast process and the intradentinal nerve fibre. Arch Oral Biol 13:833–834

    PubMed  CAS  Google Scholar 

  • Frank RM (1970) Etude autoradiographique de la dentinogenese en microscopie electronique a l’aide de la proline tritiee chez le chat. Arch Oral Biol 15:583–596

    PubMed  CAS  Google Scholar 

  • Frank RM, Sauvage C, Frank P (1972) Morphological basis of dental sensitivity. Int Dent J 22:1–19

    PubMed  CAS  Google Scholar 

  • Frank RM, Cimasoni J, Tsamouranis A, Matter J, Fiore-Donno G (1977) Collagen resorption by fibroblasts in human gingiva. J Biol Buccale 5:343–351

    PubMed  CAS  Google Scholar 

  • Frank RM, Wiedemann P, Fellinger E (1977) Ultrastructure of lymphatic capillaries in the human dental pulp. Cell Tissue Res 178:229–238

    PubMed  CAS  Google Scholar 

  • Fried K, Hildebrand C (1981) Pulpal axons in developing mature and aging feline permanent incisors. A study by electron microscopy. J Comp Neurol 203:23–26

    PubMed  CAS  Google Scholar 

  • Fullmer HN, Sheetz JH, Narkates AJ (1974) Oxytalan connective tissue fibers: a review. J Oral Pathol 3:291–316

    PubMed  CAS  Google Scholar 

  • Furseth R, Mjor IA, Skogedal O (1980) The fine structure of induced pulpitis in a monkey (Cercaptithecus aethiops). Arch Oral Biol 24:883–888

    Google Scholar 

  • Garant PR (1976) Collagen resorption by fibroblasts. A theory of fibroblastic maintenance of periodontal ligament. J Periodontol 47:380–390

    PubMed  CAS  Google Scholar 

  • Garant PR, Cho MI, Cullen MR (1982) Attachment of periodontal ligament fibroblasts to the extracellular matrix in the squirrel monkey. J Periodont Res 17:70–79

    PubMed  CAS  Google Scholar 

  • Gazelius B, Brodin E, Olgart L (1981) Depletion of substance P-like immunoreactivity in the cat pulp by antidromic nerve stimulation. Acta Physiol Scand 111:319–327

    PubMed  CAS  Google Scholar 

  • Gotjamanos T (1969a) Cellular organization in the sub-odontoblastic zone of the dental pulp. I. A study of cell free and cell rich layers in pulps of adult rat and deciduous monkey teeth. Arch Oral Biol 14:1007–1010

    PubMed  CAS  Google Scholar 

  • Gotjamanos T (1969b) Cellular organization in the sub-odontoblastic zone of the dental pulp. II. Period and mode of development of the cell rich layer in rat molar pulp. Arch Oral Biol 14:1011–1019

    PubMed  CAS  Google Scholar 

  • Graf W, Bjorlin G (1951) Diameters of nerve fibers in human tooth pulp. J Am Dent Assoc 43:186–193

    PubMed  CAS  Google Scholar 

  • Gronblad M, Liesi P, Muck AM (1984) Peptidergic nerves in human tooth pulp. Scand J Dent Res 92:319–324

    PubMed  CAS  Google Scholar 

  • Gunji T (1982) Morphological research on the sensitivity of dentin. Arch Histol Jpn 45:45–67

    PubMed  CAS  Google Scholar 

  • Gvozdenociv-Sedlecki S, Olvist V, Hansen HP (1973) Histologic variations in the pulp of intact premolars from young individuals. Scand J Dent Res 81:433–440

    Google Scholar 

  • Gysi A (1900) An attempt to explain the sensitiveness of dentin. Br J Dent Sci 43:865–868

    Google Scholar 

  • Haim G (1965) Elektronenmikroskopische Untersuchungen der Zahnpulpa. Dtsche Zahnarztl Zeitschr 20:583–588

    CAS  Google Scholar 

  • Hals E, Tonder KJ (1981) Elastic (pseudoelastie) tissue in arterioles of the human and dog dental pulp. Scand J Dent Res 89:218–227

    PubMed  CAS  Google Scholar 

  • Han SS (1968) The fine structure of cells and intercellular substances of the dental pulp. In: Finn SB (ed) Biology of the dental pulp organ: a symposium. University of Alabama Press, Birmingham, pp 103–140

    Google Scholar 

  • Han SS, Avery JK, Bang JS (1967) The effect of actinomycin D on the fibroblast of the pulp of the rat incisor. Arch Oral Biol 12:503–512

    PubMed  CAS  Google Scholar 

  • Harris R, Griffin CJ (1968) Fine structure of nerve endings in the human dental pulp. Arch Oral Biol 13:773–778

    PubMed  CAS  Google Scholar 

  • Harris R, Griffin CJ (1969) The fine structure of the mature odontoblasts and cell rich zone of the human dental pulp. Aust Dent J 14:168–177

    PubMed  CAS  Google Scholar 

  • Harris R, Griffin CJ (1971) The ultrastructure of small blood vessels of the normal human pulp. Aus Dent J 16:220–226

    CAS  Google Scholar 

  • Hassel JH von (1971) Physiology of the human dental pulp. Oral Surg 32:126–134

    PubMed  Google Scholar 

  • Hattyasy D (1961) Continuous regeneration of the dentinal nerve endings. Nature 189:72–74

    PubMed  CAS  Google Scholar 

  • Hay ED (1983) Cell and extracellular matrix: their organization and mutual dependence. Modern Cell Biology, vol 2. Liss, New York, pp 509–548

    Google Scholar 

  • Hayakawa T, Iijima K, Hashimoto Y, Mioke Y, Takei T, Matsui T (1981) Developmental changes in the collagens and some collagenolytic activities in bovine dental pulp. Arch Oral Biol 26:1057–1062

    PubMed  CAS  Google Scholar 

  • Hirafuji M, Satoh S, Ogura Y (1980) Prostaglandins in rat pulp tissue. Dent Res 59:1535–1548

    CAS  Google Scholar 

  • Holland GR (1980) Non-myelinated nerve fibres and their terminals in the sub-odontoblastic plexus of the feline dental pulp. J Anat 130:457–467

    PubMed  CAS  Google Scholar 

  • Holland GR (1985) The odontoblast process: form and function. J Dent Res 64:499–514 (special issue)

    PubMed  Google Scholar 

  • Holland GR, Robinson PP (1983) The number and size of axons at the apex of the cat’s canine tooth. Anat Rec 20:215–222

    Google Scholar 

  • Hopewell-Smith A (1916) The so-called innervation of the dentin: an epicriticism. Dental Cosmos 58:421–427

    Google Scholar 

  • Hynes RO, Destree AT (1978) Relationship between fibronectin (Lets protein) and actin. Cell 15:866–875

    Google Scholar 

  • Iguchi Y, Yamamura T, Ichikawa T, Hashimoto S, Horiuchi T, Shimono M (1984) Intercellular junctions in odontoblasts of the rat incisor studied with freeze fracture. Arch Oral Biol 29:487–497

    PubMed  CAS  Google Scholar 

  • Isokawa S (1960) t)ber das Lymphsystem des Zahnes. Z Zellforsch 52:140–149

    PubMed  CAS  Google Scholar 

  • Johnsen D, John S (1978) Quantitations of nerve fibres in the primary and permanent canine and incisor teeth in man. Arch Oral Biol 23:825–829

    PubMed  CAS  Google Scholar 

  • Johnsen DC, Karlsson UL (1974) Electron microscopic quantitations of feline primary and permanent innervation. Arch Oral Biol 19:671–678

    PubMed  CAS  Google Scholar 

  • Karim A, Cournil I, Leblond CP (1979) Immunohistochemical localization of procollagens. II. Electron microscopic distribution of procollagen I antigenicity in the odontoblasts and predentin of rat incisor teeth by a direct method using peroxidase linked antibodies. J Histochem Cytochem 27:1070–1083

    PubMed  CAS  Google Scholar 

  • Kennedy JS, Kennedy GDC (1957) Sulphated mucopolysaccharides in rodent teeth. J Anat 91:398–408

    PubMed  CAS  Google Scholar 

  • Koling A (1983) Membrane structures in the human pulpdentin region. An electron microscopic investigation of permanent teeth using the freeze fracture technique; Doctoral Thesis, Centraltryckeriet, Uppsala Universitet

    Google Scholar 

  • Koling A (1985) Membrane architecture of myelinated nerve fibres in the human dental pulp studied by freeze fracturing. Arch Oral Biol 30:121–128

    PubMed  CAS  Google Scholar 

  • Kolliker A (1852) Handbueh der Gewebelehre des Menschen, 1st edn. Engelmann, Leipzig

    Google Scholar 

  • Kramer IRH (1960) The vasculature of the human dental pulp. Arch Oral Biol 12:177–189

    Google Scholar 

  • Kramer IRH (1968) The distribution of blood vessels in the human dental pulp. In: Finn SB (ed) Biology of the dental pulp organ: a symposium. University of Alabama Press, Birmingham, pp 368–377

    Google Scholar 

  • Kroeger DC, Gonzales F, Krivoy W (1961) Transmembrane potentials of cultured mouse dental pulpal cells. Proc Soc Exp Biol Med 108:134–136

    PubMed  CAS  Google Scholar 

  • Kukletova M (1970) An electron microscopic study of the lymphatic vessels in the dental pulp in the calf. Arch Oral Biol 15:1117–1124

    PubMed  CAS  Google Scholar 

  • Kukletova M, Zahradka J, Lukas Z (1968) Monoaminergic and cholinergic nerve fibers in the human dental pulp. Histochemie 16:154–158

    PubMed  CAS  Google Scholar 

  • LaFleche R, Frank RM, Steuer P (1985) The extent of the human odontoblast process as determined by transmission electron microscopy: the hypothesis of a retractable suspensor system. J Biol Buccale 13:293–305

    CAS  Google Scholar 

  • Langeland K, Yagi T (1972) Investigations on the innervation of teeth. Int Dent J 22:240–269

    PubMed  CAS  Google Scholar 

  • Lasek R, Joseph BS, Whitlock DG (1968) Evaluation of a radioautographic neuroanatomical tracing method. Brain Res 8:319–336

    PubMed  CAS  Google Scholar 

  • Leak LV, Burke JF (1966) Fine structure of the lymphatic capillary and the adjoining connective tissue area. Am J Anat 118:785–810

    PubMed  CAS  Google Scholar 

  • Lechner JH, Kalitsky G (1981) The presence of large amounts of type III collagen in bovine dental pulp and its significance with regard to the mechanism of dentinogenesis. Arch Oral Biol 26:265–273

    PubMed  CAS  Google Scholar 

  • Liljn J, Fayerberg-Mohlin B (1984) Dentinal innervation of impacted human third molars. Scand J Dent Res 92:485–488

    Google Scholar 

  • Linde A (1973a) A study of the dental pulp glycosaminoglycans from permanent human teeth and rat and rabbit incisors. Arch Oral Biol 18:49–59

    PubMed  CAS  Google Scholar 

  • Linde A (1973b) Glycosaminoglycan turnover and synthesis in the rat incisor pulp. Scand J Dent Res 81:145–154

    PubMed  CAS  Google Scholar 

  • Linde A (1985) The extracellular matrix of the dental pulp and dentin. J Dent Res 64:523–529 (special issue)

    PubMed  Google Scholar 

  • Linde A, Johansson S, Jonsson R, Jontell M (1982) Localization of fibronectin during dentinogenesis in rat incisor. Arch Oral Biol 27:1069–1073

    PubMed  CAS  Google Scholar 

  • Listgarten MA (1973) Intracellular collagen fibrils in the periodontal ligament of the mouse, rat, hamster, guinea pig and rabbit. J Periodont Res 8:335–342

    PubMed  CAS  Google Scholar 

  • MacGregor A (1936) An experimental investigation of the lymphatic system of the teeth and jaws. Proc Roy Soc Med 29:1237–1272

    PubMed  CAS  Google Scholar 

  • Magloire H (1983) Elaboration de la trame organique predentinaire: ultrastructure, cytochimie, immunochimie. These Dr Scienc Odont Lyon

    Google Scholar 

  • Magloire H, Dumont J (1976) Etude ultrastructurale de cellules pulpaires humaines cultivees “in vitro”. J Biol Buccale 4:3–20

    PubMed  CAS  Google Scholar 

  • Magloire H, Vinard H, Joffre A (1979) Electrophysiological properties of human dental pulp cells. J Biol Buccale 7:251–262

    PubMed  CAS  Google Scholar 

  • Magloire H, Joffre A, Grimaud J A, Herbage D, Couble ML, Chavrier C, Dumont J (1981) Synthesis of type I collagen by human odontoblast-like cells in explant culture: light and electron microscope immunotyping. Gell Mol Biol 27:429–435

    CAS  Google Scholar 

  • Magloire H, Joffre A, Grimaud JA, Herbage D, Couble MC, Chavrier C (1982) Distribution of type III collagen in the pulp parenchyma of human developing teeth. Light and electron microscope immunotyping. Histochemistry 74:319–328

    PubMed  CAS  Google Scholar 

  • Magnus G (1922) Über den Nachweis der Lymphgefässe in der Zahnpulpa. Dtsche Mschr Zahnheilk 40:661–670

    Google Scholar 

  • Manzoli FA, Gelli M (1968) Quantitative determination of dental lipid in the dental pulp of Bos taurus during development. Arch Oral Biol 13:705–708

    PubMed  CAS  Google Scholar 

  • Marchi F, Leblond CP (1983) Collagen biogenesis and assembly into fibrils as shown by ultrastructural and 3H-proline radioautographic studies on the fibroblasts of the rat foot pad. Am J Anat 168:167–197

    PubMed  CAS  Google Scholar 

  • Marchi F, Leblond CP (1984) Radioautographic characterization of successive compartments along the rough endoplasmic reticulum Golgi pathway of collagen precursors in foot pad fibroblasts of (3H)proline-injected rats. J Cell Biol 98:1705–1709

    PubMed  CAS  Google Scholar 

  • Martens P (1968) Human dentinogenesis with special regard to the formation of peritubular crown dentine and zones in fetal deciduous and unabraded permanent teeth. Scand J Dent Res [suppl] 76:5–169

    CAS  Google Scholar 

  • Martinez-Hernandez A, Nakane PK, Pierce GB (1974) Intracellular localization of basement membrane antigen in parietal yolk sac cells. Am J Pathol 76:549–555

    PubMed  CAS  Google Scholar 

  • Mjor IA (1972) Experimental pulpitis. Norske Tannl Tidsk 82:268–270

    CAS  Google Scholar 

  • Mohamed SS, Atkinson ME (1982) The ontogeny of substance P containing nerve fibres in the mouse dentition. Anat Embryol (Berl) 164:153–159

    CAS  Google Scholar 

  • Montandon D, Gabbiani G, Ryan GB, Majno G (1973) The contractile fibroblast. Plast Reconstr Surg 52:286–290

    PubMed  CAS  Google Scholar 

  • Muhle W von, Doronin PP (1976) Dunnschichtchromatographische Analyse der Phospholipide aus Pulpagewebe von Schneidezahnen der Ratte. Zahn Mund Kieferheilkd 64:561–568

    CAS  Google Scholar 

  • Mumford JM, Bowsher D (1976) Pain and protopathic sensibility. A review with particular reference to teeth. Pain 2:223–243

    PubMed  CAS  Google Scholar 

  • Nachmansohn D (1948) Role of acetylcholinesterase in conduction. Bull John Hopkins Hosp 83:463–496

    PubMed  CAS  Google Scholar 

  • Närhi MVO (1985) Dentin sensitivity: a review. J Biol Buccale 13:75–96

    PubMed  Google Scholar 

  • Närhi MVO, Haegerstam G (1983) Intradental nerve activity induced by reduced pressure applied to exposed dentine in the cat. Acta Physiol Scand 119:381–386

    PubMed  Google Scholar 

  • Närhi MVO, Hirvonen TJ, Hakumaki MOK (1982a) Activation of intradental nerves in the dog to some stimuli applied to the dentine. Arch Oral Biol 27:1053–1058

    PubMed  Google Scholar 

  • Närhi MVO, Virtanen A, Huopaniemi T, Hirvonen TJ (1982b) Conduction velocities of single pulp nerve fibrils units in the cat. Acta Physiol Scand 116:209–213

    PubMed  Google Scholar 

  • Nielsen CJ, Bentley JP, Marshall FJ (1983) Age related changes in reducible cross-links of human dental pulp collagen. Arch Oral Biol 28:759–764

    PubMed  CAS  Google Scholar 

  • Noyes FB, Ladd RL (1929) The lymphatics of the dental region. Dent Cosmos 71:1041–1047

    Google Scholar 

  • Obst T (1971) Über das Endgebiet des Perineurium an den Zahnnerven der Ratte. Z Zellforsch 114:515–531

    PubMed  CAS  Google Scholar 

  • Oehmke HJ, Hager C (1983) Zum Problem des Lymphabflusses in der Zahnpulpa. Dtsche Zahnarztl Z 38:959–962

    Google Scholar 

  • Olgart L (1979) Local mechanisms in dental pain. In: Beer RF Jr, Bassette EG (eds) Mechanisms of pain and analgesia compounds. Raven, New York, pp 285–294

    Google Scholar 

  • Olgart L, Gazelium B, Brodin E, Nilson G (1977a) Release of substance P-like immunoreactivity from the dental pulp. Acta Physiol Scand 101:510–512

    PubMed  CAS  Google Scholar 

  • Olgart L, Hokfelt T, Nilsson G, Pernow B (1977b) Localization of substances P-like immunoreactivity in the tooth pulp. Pain 4:153–159

    PubMed  CAS  Google Scholar 

  • Orlowski WA (1974) Analysis of collagen. Glycoproteins and acid mucopolysaccharides in the bovine and porcine dental pulp. Arch Oral Biol 19:255–258

    PubMed  CAS  Google Scholar 

  • Pimenidis MZ, Hinds JW (1977) An autoradiographic study of the sensory innervation of teeth. I. Dentin. J Dent Res 56:827–834

    CAS  Google Scholar 

  • Pischinger A, Stockinger L (1968) Die Nerven der menschlichen Zahnpulpa. Z Zellforsch 89:44–61

    PubMed  CAS  Google Scholar 

  • Pohto P, Antila R (1968a) Demonstration of adrenergic nerve fibers in human dental pulp by histochemical fluorescence method. Acta Odontol Scand 26:137–144

    PubMed  CAS  Google Scholar 

  • Pohto P, Antila R (1968 b) Acetylcholinesterase and noradrenalin in the nerves of dental pulp. Acta Odontol Scand 26:641–659

    PubMed  CAS  Google Scholar 

  • Pohto P, Antila R (1972) Innervation of blood vessels in the dental pulp. Int Dent J 22:228–239

    PubMed  CAS  Google Scholar 

  • Provenza DV (1958) The blood vascular supply of the dental pulp with emphasis on capillary circulation. Circ Res 6:213–218

    PubMed  CAS  Google Scholar 

  • Provenza DV (1968) Comparative morphology of the pulp vascular system. In: Finn SB (ed) Biology of the dental pulp organ: a symposium. University of Alabama Press, Birmingham, pp 353–363

    Google Scholar 

  • Provenza DV, Fischlschweiger W, Sisca RF (1967) Fibres in human dental papillae. A preliminary report on the fine structure. Arch Oral Biol 12:1533–1539

    PubMed  CAS  Google Scholar 

  • Rabinowitz JL, Rossman S (1979) Lipid composition of human dental pulp. Arch Oral Biol 24:477–478

    PubMed  CAS  Google Scholar 

  • Rapp R, Avery JK, Rector RA (1957) A study of the distribution of nerves in human teeth. J Can Dent Assoc 23:447–453

    Google Scholar 

  • Rapp R, Avery JK, Strachman DS (1968) Possible role of acetylcholinesterase in neural conduction within the dental pulp. In: Finn SB (ed) Biology of the dental pulp organ. A symposium. University of Alabama Press, Birmingham, pp 309–325

    Google Scholar 

  • Rapp R, El-Labban NG, Kramer IRH, Wood D (1977) Ultrastructure of fenestrated capillaries in human dental pulp. Arch Oral Biol 22:317–319

    PubMed  CAS  Google Scholar 

  • Raschkow I (1835) Meletamata circa mammalium dentium evolutionem. Fridloender, Vratislaviae

    Google Scholar 

  • Reader A, Foreman DW (1981) An ultrastructural quantitative investigation of human intradental innervation. J Endod 7:493–499

    PubMed  CAS  Google Scholar 

  • Retzius G (1894) Zur Kenntnisse der Endungsweise der Nerven in den Zahnen. Biol Untersuch 6:64–69

    Google Scholar 

  • Riedel H, Fromme HG, Tallen B (1966) Elektronenmikroskopische Untersuchungen zur Frage der Kapillarmorphologie in der menschlichen Zahnpulpa. Arch Oral Biol 11:1049–1055

    PubMed  CAS  Google Scholar 

  • Roane JB, Foreman DW, Melfi RC, Marshall FJ (1973) An ultrastructural study of dentinal innervation in the adult human tooth. Oral Surg 35:94–104

    PubMed  CAS  Google Scholar 

  • Ross R, Benditt EP (1965) Wound healing and collagen formation. V Quantitative electron microscope radioautography observations of proline-H3 utilization by fibroblasts. J Cell Biol 27:83–106

    PubMed  CAS  Google Scholar 

  • Rothman JE (1981) The Golgi apparatus: two organelles in tandem. Science 213:1212–1219

    PubMed  CAS  Google Scholar 

  • Ruben MP, Prieto-Hernandez JR, Gott FK, Kramer GM, Bloom AA (1971) Visualization of lymphatic microcirculation of oral tissue. J Periodontol 42:774–784

    PubMed  CAS  Google Scholar 

  • Ruoslahti E (1981) Fibronectin. J Oral Pathol 10:3–13

    PubMed  CAS  Google Scholar 

  • Salpeter MM (1968) 3H-proline incorporation into cartilage. Electron microscope autoradiographic observations. J Morphol 124:387–391

    PubMed  CAS  Google Scholar 

  • Saunders RL de CH (1952) X-ray microscopy of human dental pulp vessels. Nature 180:1353–1354

    Google Scholar 

  • Saunders RL de CH (1967) Microangiography studies of periodontic and dental pulp vessels in monkey and man. J Canada Dent Assoc 33:245–252

    CAS  Google Scholar 

  • Saunders RL de CH, Rockert HOE (1967) Vascular supply of dental tissues including lymphatics. In: Miles AEW (ed) Structural and chemical organization of teeth, vol I. Academic, New York, pp 199–245

    Google Scholar 

  • Schweitzer G (1909) Über die Lymphgefäße des Zahnfleisches und der Zähne beim Menschen und Saugetieren. Arch Mikr Anat 75:927–999

    Google Scholar 

  • Sela J, Tamari I, Hirchefeld Z, Bab I (1981) Transmission electron microscopy of reparative dentin in rat molar pulps. Primary mineralization via extracellular matrix vesicles. Acta Anat (Basel) 109:247–251

    CAS  Google Scholar 

  • Shapiro IM, Wuthier RE (1966) A study of the phospholipids of bovine dental tissues. II. Developing bovine foetal dental pulp. Arch Oral Biol 11:513–519

    PubMed  CAS  Google Scholar 

  • Shuttleworth CA, Ward JL, Hirschmann PN (1978a) Extraction of collagen fractions from bovine and rabbit dental follicle, papilla and pulp. Arch Oral Biol 23:235–236

    PubMed  CAS  Google Scholar 

  • Shuttleworth CA, Ward JL, Hirschmann PN (1978b) The presence of type III collagen in the developing tooth. Biochim Biophys Acta 535:348–355

    PubMed  CAS  Google Scholar 

  • Singer II (1979) The fibronexus: a transmembrane association of fibronectin-containing fibers and bundles of 5 nm microfilaments in hamster and human fibroblasts. Cell 16:675–685

    PubMed  CAS  Google Scholar 

  • Stanley HR, Ranney AR (1962) Age changes in the human pulp. I. The quantity of collagen. Oral Surg Oral Med Oral Pathol 15:1396–1404

    PubMed  CAS  Google Scholar 

  • Stella A, Fuentes AV (1963) Inervacion dentinaria intracanalicular. Su demonstration por el metodo de la hematoxilina-ferrica de Heidenhain. An Fac Odont (Montevideo) 9:157–206

    Google Scholar 

  • Takahashi K (1985) Vascular architecture of dog pulp using corrosion resin-cast examined under a scanning electron microscope. J Dent Res 64:579–584 (special issue)

    PubMed  Google Scholar 

  • Ten Cate AR (1972) Morphological studies of flbrocytes in connective tissue undergoing rapid remodelling. J Anat 112:401–404

    PubMed  Google Scholar 

  • Ten Cate AR (1980) Oral histology, development, structure and function. Mosby, St Louis

    Google Scholar 

  • Ten Cate AR, Deporter DA (1974) The role of the fibroblast in collagen turnover in the functioning periodontal ligament of the mouse. Arch Oral Biol 19:330–340

    Google Scholar 

  • Ten Cate AR, Shelton L (1966) Cholinesterase activity in human teeth. Arch Oral Biol 11:423–428

    PubMed  Google Scholar 

  • Ten Cate AR, Deporter DA, Freeman E (1976) The role of the fibroblast in the remodelling of periodontal ligament during physiologic tooth movement. Am J Orthod 69:115–168

    Google Scholar 

  • Tomes J (1856) On.the presence of fibrils of soft tissue in the dentinal tubes. Philos Trans Soc Lond [Biol] 146:515–522

    Google Scholar 

  • Torneck CD (1978) Intracellular destruction of collagen in the human dental pulp. Arch Oral Biol 23:745–747

    PubMed  CAS  Google Scholar 

  • Trelstad RL, Hayashi K (1979) Tendon collagen fibrillogenesis: intracellular subassemblies and cell surface changes associated with fibril growth. Dev Biol 71:228–242

    PubMed  CAS  Google Scholar 

  • Trowbridge H (1983) Pulp histology and physiology. In: Cohen S, Burns RC (eds) Pathways of the pulp. Mosby, St Louis, pp 323–378

    Google Scholar 

  • Uitto VJ, Antila R (1971) Characterization of collagen biosynthesis in rabbit dental pulp in vitro. Acta Odontol Scand 29:609–617

    PubMed  CAS  Google Scholar 

  • Vacek Z, Plackova A, Bures H (1969) Electron microscopy of innervation of human dental pulp. Folia Morphol (Praha) 17:97–109

    CAS  Google Scholar 

  • Viragh SZ, Papp M, Rusznyak I (1971) The lymphatics in oedematous skin. Acta Morph Acad Sci Hung 19:203–213

    CAS  Google Scholar 

  • Wasikawa S, Ichikawa H, Nishimoto T, Matsuo S, Yamamoto K, Nakata T, Akai M (1984) Substance P-like immunoreactivity in the pulp-dentine zone of human molar teeth demonstrated by indirect immunofluorescence. Arch Oral Biol 29:73–75

    Google Scholar 

  • Weil A (1887) Zur Histologic der Zahnpulpa. Dtsche Monatsschr Zahnheilkd 5:335–356

    Google Scholar 

  • Weill R, Bensadoun R, Touurniel F de (1975) Démonstration autoradiographique de Pinnervation de la dent et du parodonte. CR Academie Sciences Serie D 281:647–650

    CAS  Google Scholar 

  • Weinstock M, Leblond CP (1974) Synthesis, migration and release of precursor collagen by odontoblasts as visualized by radioautography after (3H)proline administration. J Cell Biol 60:92–127

    PubMed  CAS  Google Scholar 

  • Weiss L (1977) Lymphatic vessels and lymph nodes. In: Greep RO, Weiss L (eds) Histology, 4th edn. MacGraw Hill, New York, pp 523–544

    Google Scholar 

  • Winter HF, Bishop JG, Dorman HL (1963) Transmembrane potentials of odontoblasts. J Dent Res 42:594–598

    PubMed  CAS  Google Scholar 

  • Wislock GB, Sognnaes RF (1950) Histochemical reactions of normal teeth. Am J Anat 87:239–266

    Google Scholar 

  • Yamada MK, Sagi T, Sheds R (1971) Mechanisms of excitation of nerve and tooth by thermal stimulation. In: Dubner R, Kawamura Y (eds) Oral facial sensory and motor mechanisms. Appleton Centry Crofts, New York, pp 73–82

    Google Scholar 

  • Yamamura T (1985) Differentiation of pulpal cells and inductive influences of various matrices with reference to pulpal wound healing. J Dent Res 64:534–540 (spec, issue)

    Google Scholar 

  • Zach L, Topal R, Cohen G (1969) Pulpal repair following operative procedures: radioautographic demonstration with tritiated thymidine. Oral Surg 28:587–597

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frank, R.M., Nalbandian, J. (1989). Structure and Ultrastructure of the Dental Pulp. In: Teeth. Handbook of Microscopic Anatomy, vol 5 / 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83496-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83496-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83498-1

  • Online ISBN: 978-3-642-83496-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics