Skip to main content

Development of Dentine and Pulp

  • Chapter
Teeth

Part of the book series: Handbook of Microscopic Anatomy ((1668,volume 5 / 6))

Abstract

Dentine is the first of the calcified dental tissues to be deposited during tooth embryogenesis. Its development involves cellular and extracellular activities which take place primarily in the dental papilla, the precursor of the dental pulp. In the early formative stages, important epithelio-mesenchymal interactions occur between the enamel organ and the dental papilla, notably between the cells of the internal dental epithelium and the peripheral cells of the dental papilla.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams D (1962) The blood supply to developing dentine. Arch Oral Biol 7:773–774

    PubMed  CAS  Google Scholar 

  • Andujar MB, Magloire H, Hartman DJ, Grimaud JA (1984) Modifications of Hertwig’s epithelial cells during developing mouse molar tooth: ultrastructural, histochemical and immunohistochemical studies. In: Belcourt AB, Ruch JV (eds) Tooth morphogenesis and differentiation, vol 125. Inserm, Paris, pp 535–544

    Google Scholar 

  • Appleton J, Morris DC (1979) An ultrastructural investigation of the role of the odontoblast in matrix calcification using the potassium pyroantimonate osmium method for calcium localization. Arch Oral Biol 24:467–475

    PubMed  CAS  Google Scholar 

  • Ashida O (1983) Hypothalamic nuclei related to circadian rythmicity in dentinogenesis of the rat incisor. Bull Kanagawa Dent Coll 11:15–27

    Google Scholar 

  • Baud CA, Dupont DH (1965) La structure microscopique des ostéocytes en rapport avec leur fonction. In: Richelle LJ, Dallemagne MJ (eds) Proc Eur 2nd Symp Calcified tissues. Collection Colloques. University Liege, pp 31-37

    Google Scholar 

  • Baume LJ (1980) The biology of pulp and dentine : a historic, terminologic, taxonomic, histological, biochemical, embryonic and clinical survey. Monographs in Oral Science. Karger, Basel

    Google Scholar 

  • Beams HW, King RL (1933) The Golgi apparatus in the developing tooth with special reference to polarity. Anat Rec 57:29–39

    Google Scholar 

  • Bernard GW (1972) Ultrastructural observations of initial calcification in dentin and enamel. J Ultrastruct Mol Struct Res 41:1–17

    CAS  Google Scholar 

  • Bernick S (1969) Histochemical study of dentin in parathyroidectomized rats. J Dent Res 48:1251–1257

    PubMed  CAS  Google Scholar 

  • Berthet-Colominas C, Miller A, White SW (1979) Structural study of the calcifying collagen in turkey leg tendons. J Mol Biol 134:431–445

    PubMed  CAS  Google Scholar 

  • Betti F, Katchburian E (1982) Proteolytic activity of developing dentine of rat tooth terms revealed by the gelatin-film substrate technique. Arch Oral Biol 27:891–896

    PubMed  CAS  Google Scholar 

  • Bienkowski RS (1984) Intracellular degradation of newly synthesized collagen. Coll Relat Res 4:399–412

    PubMed  CAS  Google Scholar 

  • Bishop MA (1985) Evidence for tight junctions between odontoblasts in the rat incisor. Cell Tissue Res 239:137–140

    PubMed  CAS  Google Scholar 

  • Blackwood HJJ (1957) Intermediate cementum. Br Dent J 102:345–350

    Google Scholar 

  • Bonucci E (1984) Matrix vesicles: their role in calcification. In: Linde A (ed) Dentin and dentinogenesis, vol I. CRC Press, Boca Raton, pp 135–154

    Google Scholar 

  • Boyde A, Jones S (1983) Mineralization in the vicinity of the cement-dentine junction. Proc Anat Soc Great Britain Ireland 136:642–643

    Google Scholar 

  • Boyde A, Reith EJ (1977) Qualitative electron probe analysis of secretory ameloblasts and odontoblasts in the rat incisor. Histochemistry 50:347–354

    PubMed  CAS  Google Scholar 

  • Boyde A, Reith EJ, Jones SJ (1978) Intercellular attachments between calcified collagenous tissue forming cells in the rat. Cell Tissue Res 191:507–516

    PubMed  CAS  Google Scholar 

  • Bradford E (1967) Microanatomy and histochemistry of dentin. In: Miles AEW (ed) Structural and chemical organization of teeth, vol II. Academic, New York London, pp 3–34

    Google Scholar 

  • Bres EF, Voegel JC, Barry JC, Frank RM (1986) Theoretical image simulation of dark contrast line in twinned apatite bicrystals and its possible correlation with the chemical properties of human dentine and enamel crystals. Biophys J 50:1185–1193

    PubMed  CAS  Google Scholar 

  • Brown WE (1962) Crystal structure of octocalcium phosphate. Nature 196:1048–1050

    CAS  Google Scholar 

  • Brown WE (1965) A mechanism for growth of apatitic crystals. In: Stack MV, Fearnhead RW (eds) Tooth enamel. Wright, Bristol, pp 11–14

    Google Scholar 

  • Brunn A von (1887) Über die Ausdehnung des Schmelzorgans und seine Bedeutung für die Zahnbildung. Arch Mikr Anat 29:367–382

    Google Scholar 

  • Burgess AMC, Katchburian E (1982) Morphological types of epithelial mesenchymal cell contacts in odontogenesis. J Anat 135:577–584

    PubMed  CAS  Google Scholar 

  • Butler WT (1984a) Dentin collagen: chemical structure and role in mineralization. In: Linde A (ed) Dentin and dentinogenesis, vol II. CRC Press, Boca Raton, pp 37–53

    Google Scholar 

  • Butler WT (1984b) Matrix molecules of bone and dentin. Coll Relat Res 4:297–307

    PubMed  CAS  Google Scholar 

  • Butler WT, Bhown M, Di Muzio MT, Cothran WC, Linde A (1983) Multiple forms of rat dentin phosphoproteins. Arch Biochem Biophys 225:178–186

    PubMed  CAS  Google Scholar 

  • Byers MR (1980) Development of sensory innervation of dentin. J Comp Neurol 191:413–427

    PubMed  CAS  Google Scholar 

  • Calle A (1984) Intercellular junctions between human odontoblasts revealed by freeze-fracture. In: Belcourt AB, Ruch JV (eds) Tooth morphogenesis and differentiation, vol 125. Inserm, Paris, pp 167–171

    Google Scholar 

  • Calle A (1985) Intercellular junctions between human odontoblasts. A freeze-fracture study after demineralization. Acta Anat (Basel) 122:138–144

    CAS  Google Scholar 

  • Cheung WY (1980) Calmodulin. An introduction. In: Cheung WY (ed) Calcium and cell function, vol I. Academic, New York, pp 1–12

    Google Scholar 

  • Chibon P (1967) Etude experimentale par ablations, greffes et autoradiographic de l’origine des dents chez l’amphibien unrodéle Pleurodeles Waltü Michah. Arch Oral Biol 12:745–755

    PubMed  CAS  Google Scholar 

  • Cho MI, Garant PR (1984) Comparative radioautographic study of the effect of L-azetidine-2-earboxylic acid on matrix secretion and Golgi of the mouse incisor. Calcif Tissue Int 36:409–420

    PubMed  CAS  Google Scholar 

  • Cho MI, Garant PR (1985) Radioautographic analysis of (3H)-fucose utilization by mouse odontoblasts with emphasis on intraeytoplasmic and plasma membrane glycoproteins. Archs Oral Biol 30:110–120

    Google Scholar 

  • Connor NS, Aubin JE, Melcher AH (1984) The distribution of fibronectin in rat tooth and periodental tissues: an immunofluorescence study using a monoclonal antibody. J Histochem Cytochem 32:565–572

    PubMed  CAS  Google Scholar 

  • Corpron RE, Avery JK (1973) The ultrastructure of intradental nerves in developing mouse molars. Anat Rec 175:585–606

    PubMed  CAS  Google Scholar 

  • Cotmore JM, Nichols G Jr, Wuthier RE (1971) Phospholipid-calcium phosphate complex: enhanced calcium migration in the presence of phosphate. Science 172:1339–1341

    PubMed  CAS  Google Scholar 

  • Cournil I, Leblond CP, Pomponio J, Hand AR, Sederlof L, Martin GR (1979) Immunohistochemical localization of procollagens. I. Light microscopic distribution of procollagen I, III and IV antigenicity in the rat incisor tooth by the indirect peroxidase-antiperoxidase method. J Histochem Cytochem 27:1059–1069

    PubMed  CAS  Google Scholar 

  • Cox CF, Avery JK, Lee SD, Tomaro AA, Simmons TA (1976) Ultrastructural characterization of junctional complexes between odontoblasts. J Dent Res 55: B86 (abstract) (special issue)

    Google Scholar 

  • Croissant RD (1971) Isolation of an intercellular matrix RNA-protein complex during odontogenesis. J Dent Res 50:1065–1071

    CAS  Google Scholar 

  • Cuvier G (1805) Leçons d’anatomie comparée. Dix septième leçon des dents. Crochars et Fantin (Paris) 3:103–200

    Google Scholar 

  • Daculsi G, Kerebel B (1978) High resolution electron microscopic study of human enamel crystallites: size, shape and growth. J Ultrastruct Res 65:163–172

    PubMed  CAS  Google Scholar 

  • Davis NR, Cavanagh JC (1982) Hard tissue mineralization inhibitors. In: Veis A (ed) The chemistry and biology of mineralized connective tissues. Elsevier North Holland, New York, pp 489–491

    Google Scholar 

  • Dimuzio, MT, Veis A (1978) Phosphoryns, major noncollagenous proteins of rat incisor dentin. Calcif Tissue Res 25:169–178

    PubMed  CAS  Google Scholar 

  • Dimuzio MT, Bhown M, Butler WT (1981) Odontoblast, dentin organ cultures: the biosynthesis of matrix protein. In: Veis A (ed) The chemistry and biology of mineralized connective tissues. Elsevier, North Holland, New York, pp 427–431

    Google Scholar 

  • Dimuzio MT, Bhown M, Butler WT (1983) The biosynthesis of α-carboxyglutamic acid-containing proteins in rat incisor odontoblasts in organ culture. Biochem J 216:249–257

    PubMed  CAS  Google Scholar 

  • Dryburgh L (1967) Epigenetics of early tooth development in the mouse. J Dent Res 46:1264 (abstract)

    Google Scholar 

  • Dunlap C, Williams C, Barker B, Hoff R (1984) An investigation of S-100 protein in embryonic dental papillae of rats. Oral Surg Oral Med Oral Pathol 58:575–578

    PubMed  CAS  Google Scholar 

  • Dustin P (1978) Microtubules. Springer, Berlin

    Google Scholar 

  • Duve C de (1978) An integrated view of lysosome function. In: Berlin RD, Herrmann, Lepow IH, Tanzer JM (eds) Molecular basis of biological degradative processes. Academic, New York, pp 25–38

    Google Scholar 

  • Ebner V von (1875) Über den feineren Bau der Knochensubstanz. Sitzgsber Akad Wiss Wien Math Naturwiss K1 III 72:1–90

    Google Scholar 

  • Eisenman DR, Glick PL (1972) Ultrastructure of initial crystal formation in dentin. J Ultrastruct Mol Struct Res 4:18–28

    Google Scholar 

  • Engfeldt B, Hjerpe A (1972) Glycosaminoglycans of dentine and predentine. Calcif Tissue Res 10:152–159

    PubMed  CAS  Google Scholar 

  • Engström C, Linde A, Persliden B (1976) Acid hydrolases in the odontoblast-predentin region of dentinogenically active teeth. Scand J Dent Res 84:76–81

    PubMed  Google Scholar 

  • Ennever J, Riggan JL, Vogel JJ (1984) Proteolipid and calcification in vitro. Cytobios 39:151–157

    PubMed  CAS  Google Scholar 

  • Farquhar MG, Palade GE (1963) Junctional complexes of various epithelia. J Cell Biol 17:375–412

    PubMed  CAS  Google Scholar 

  • Fearnhead RW (1967) Innervation of dental tissues. In: Miles AEW (ed) Structural and chemical organization of teeth, vol I. Academic Press, New York, pp 247–281

    Google Scholar 

  • Fearnhead RW (1979) Matrix-mineral relationships in enamel tissues. J Dent Dres 58B: 909–916

    Google Scholar 

  • Frank RM (1965) Microscopie électronique de la genèse de collagène dans la papille dentaire. J Microsc 4:43–56

    Google Scholar 

  • Frank RM (1968a) Etude ultrastructurale de la dentinogenèse et de l’amelogénèse. These doct 3ème cycle science odont. Université Louis Pasteur, Strasbourg

    Google Scholar 

  • Frank RM (1968b) Ultrastructural relationship between the odontoblast, its process and the nerve fibre. In: Symons NBB (ed) Dentine and pulp: their structure and reactions. Livingstone, Edinburgh, pp 115–145

    Google Scholar 

  • Frank RM (1969) Mise en évidence de corps multivésieulaires intra-nucléaires au niveau des odontoblastes jeunes. Z Zellforsch 95:310–316

    PubMed  CAS  Google Scholar 

  • Frank RM (1970b) Etude autoradiographique de la dentinogenèse en microscopie électronique à l’aide de la proline tritiée chez le chat. Arch Oral Biol 15:583–596

    PubMed  CAS  Google Scholar 

  • Frank RM (1979) Electron microscope autoradiography of calcified tissues. Int Rev Cytol 56:183–253

    PubMed  CAS  Google Scholar 

  • Frank RM, Nalbandian J (1967) Ultrastructure of amelogenesis. In: Miles AEW (ed) Structural and chemical organization of teeth, vol I. Academic, New York, pp 399–466

    Google Scholar 

  • Frank RM, Voegel JC (1978) Dissolution mechanisms of the apatite crystals during dental caries and bone resorption. In: Berlin RD, Herrmann H, Lepow IH, Tanzer JM (eds) Molecular basis of biological degradative processes. Academic, New York, pp 277–311

    Google Scholar 

  • Frank RM, Osman M, Meyer JM, Ruch JV (1979) 3H-glucosamine electron microscope autoradiography after isolated labeling of the enamel organ or the dental papilla followed by reassociated toothgerm culture. J Biol Buccale 7:227–241

    Google Scholar 

  • Fränkel L (1835) De penitiori dentium humanorum structura observationes. Diss Vratislaviae, Pressburg

    Google Scholar 

  • Frazier PD, Nylen MU (1972) Biophysical studies of calcium transport in mineralizing tissues. In: Takeuchi T, Ogawa K, Fujita S (eds) 4th Int Congress Histochem Cytochem. Japan Scient Press, Kyoto, pp 91–92

    Google Scholar 

  • Fried K, Hildebrand C (1981a) Pulpal axons in developing, mature and aging feline permanent incisors. A study by electron microscopy. J Comp Neurol 203:23–36

    PubMed  CAS  Google Scholar 

  • Fried, K, Hildebrand C (1981b) Developmental growth and degeneration of pulpal axons in feline primary incisors. J Comp Neurol 203:37–51

    PubMed  CAS  Google Scholar 

  • Fujita Y (1978) Formation of interradicular portion of mouse first maxillary molars. Jap J Oral Biol 20:1–8

    Google Scholar 

  • Furseth R (1971) The fine structure of odontoblast/predentin area in the root. Scand J Dent Res 79:141–150

    PubMed  CAS  Google Scholar 

  • Furseth R (1974) The structure of peripheral dentine in young human premolars. Scand J Dent Res 82:557–561

    PubMed  CAS  Google Scholar 

  • Garant PR (1972) The demonstration of complex gap junctions between the cells of the enamel organ with lanthanum nitrate. J Ultrastruct Mol Struct Res 40:333–348

    CAS  Google Scholar 

  • Garant PR (1978) Microanatomy of the oral mineralized tissues. In: Shaw JH, Sweeney EA, Cappuccino CC, Meller SB (eds) Textbook of oral biology, 1st edn. Saunders, Philadelphia, pp 181–225

    Google Scholar 

  • Garant PR, Szabo G, Nalbandian J (1968) The fine structure of mouse odontoblasts. Arch Oral Biol 13:857–876

    PubMed  CAS  Google Scholar 

  • Glanville RW, Rauter A, Fietzek PP (1975) Isolation and characterization of a native placental basement membrane collagen and its component chains. Eur J Biochem 95:383–389

    Google Scholar 

  • Glick PL (1982) Identification of mineral fractions in developing rat incisors. In: Veis A (ed) The chemistry and biology of mineralized tissues. Elsevier, North Holland New York, pp 309–311

    Google Scholar 

  • Glimcher MJ (1960) Specificity of the molecular structure of organic matrices in mineralization. In: Sognnaes RF (ed) Calcification in biological systems. Am Assoc Adv Sciences, Washington, pp 421–487

    Google Scholar 

  • Glimcher MJ (1982) On the form and function of bone: from molecules to organs. Wolffs law revisited. In: Veis A (ed) The chemistry and biology of mineralized connectived tissues. Elsevier, North Holland New York, pp 617–673

    Google Scholar 

  • Glimcher MJ (1984) Recent studies of the mineral phase in bone and its possible linkage to the organic matrix by protein-bound phosphate bonds. Philos Trans R Soc Lond [Biol] 304:479–508

    CAS  Google Scholar 

  • Goldberg M (1983) “Protéoglycanes de la dentine et de l’émail: interrelations avec les composants matriciels. Etudes histochimiques et ultrastrueturales”; Thèse Doct d’Etat Sciences Nat Université, Paris 6

    Google Scholar 

  • Goldberg M, Escaig F (1984a) Distribution of filipin-cholesterol complexes in rat incisor odontoblasts. J Biol Buccale 12:171–180

    PubMed  CAS  Google Scholar 

  • Goldberg M, Escaig F (1984b) Improved preservation of intramitochondrial granules in rat-incisor odontoblasts by rapid freezing and freeze substitution fixation. Arch Oral Biol 29:295–301

    PubMed  CAS  Google Scholar 

  • Goldberg M, Septier D (1983) Electron microscopic visualization of proteoglycans in rat incisor predentine and dentine with cuprolinic blue. Arch Oral Biol 38:79–83

    Google Scholar 

  • Goldberg M, Genotelle-Septier D, Weill R (1978) Glycoproteins et proteoglycanes dans la matrice predentinaire et dentinaire chez le rat: etude ultrastrueturale. J Biol Buccale 6:75–90

    PubMed  CAS  Google Scholar 

  • Gränström G (1984) Further evidence of an intravesicular Ca2+ pump in odontoblasts from rat incisors. Arch Oral Biol 29:599–606

    PubMed  Google Scholar 

  • Gränström G, Linde A (1981) ATP dependent uptake of Ca2+ by a microsomal fraction from rat incisor odontoblasts. Calcif Tissue Int 33:125–128

    PubMed  Google Scholar 

  • Greulich RC, Slavkin HC (1965) Amino acid utilization in the synthesis of enamel and dentin matrices as visualized by autoradiography. In: Leblond CP, Warren KK (eds) The use of radioautography in investigating protein synthesis. Symposium International Society Cell Biology. Academic Press, New York 4:199–214

    Google Scholar 

  • Hansson LI, Stenström A, Thorngren KG (1978) Effect of pituitary hormones on dentin production in maxillary incisors in the rat. Scand J Dent Res 86:80–86

    PubMed  CAS  Google Scholar 

  • Harven de E, Bernhardt W (1956) Etude au microscope électronique de l’ultrastructure du centriole chez les vertébrés. Z Zellforsch 45:378–498

    Google Scholar 

  • Hascall VC, Hascall GK (1981) Proteoglycans. In: Hay ED (ed) Cell biology of extracellular matrix, vol 2. Plenum, New York, pp 39–63

    Google Scholar 

  • Hauschka PV, Lian JB, Gallop PM (1975) Direct identification of the calcium-binding amino acid, carboxyglumate, in mineralized tissue. Proc Natl Acad Sci USA 72:3925–3929

    PubMed  CAS  Google Scholar 

  • Hay ED (1981) Celt biology of extracellular matrix. Plenum, New York

    Google Scholar 

  • Hay ED (1983) Cell and extracellular matrix: their organization and mutual dependence. In: Mcintosh JR, Satir BH (ed) Modern cell biology, vol II. Liss, New York, pp 509–548

    Google Scholar 

  • Heritier M, Deminatti M (1970) Rôle du mésenchyme odontogene dans l’orientation de la morphogenese coronaire des dents chez la souris. CR Ac Sciences (Paris) 271:851–853

    CAS  Google Scholar 

  • Heritier M, Bailly Y, Robert JL (1984) Donnees nouvelles sur l’ultrastructure de la gaine de Hertwig chez la souris. In: Belcourt AB, Ruch JV (eds) Tooth morphogenesis and differentiation, vol 125. Inserm, Paris, pp 527–534

    Google Scholar 

  • Herold RC, Kaye H (1966) Mitochondria in odontoblastic process. Nature 210:108–109

    Google Scholar 

  • Hjerpe A, Antonopoulos J, Engfeldt B, Wikstrom B (1983) Analysis of dentine glycosaminoglycans using high performance liquid chromatography. Calcif Tissue Int 35:496–501

    PubMed  CAS  Google Scholar 

  • Höhling HJ, Fromme HG (1984) Cellular transport and accumulation of calcium and phosphate during dentinogenesis. In: Linde A (ed) Dentin and dentinogenesis, vol II. CRC Press, Boca Raton, pp 1–15

    Google Scholar 

  • Höhling HJ, Hall T, Boyde A (1967) Electron probe X-ray microanalysis of mineralization in rat incisor peripheral dentine. Naturwissenschaften 54:617–618

    PubMed  Google Scholar 

  • Höhling HJ, Steffens H, Heuck F (1972) Untersuchungen zur Mineralisierungsdichte im Hartgewebe mit Protein-Polysaccharid bzw. mit Kollagen als Hauptbestandteil der Matrix. Z Zellforsch 134:283–296

    PubMed  Google Scholar 

  • Holland GR (1975) Membrane junctions on cat odontoblasts. Arch Oral Biol 20:551–552

    PubMed  CAS  Google Scholar 

  • Hopewell-Smith A (1903) The histology and patho-histology of the teeth and associated parts. The Dental Manufacturing Company, London

    Google Scholar 

  • Hopewell-Smith A (1920) Concerning human cementum. J Dent Res 2:59–75

    Google Scholar 

  • Huggins CB, McCarrol MD, Dahlberg AA (1934) Transplantation of tooth germ elements and the experimental heterotopic formation of dentin enamel. J Exp Med 60:199–210

    PubMed  CAS  Google Scholar 

  • Hunt AM, Paynter KJ (1963) The role of cells of the stratum intermedium in the development of the guinea pig molar. Arch Oral Biol 8:65–78

    PubMed  CAS  Google Scholar 

  • Hunter J (1778) The natural history of human teeth, 2nd edn. Johnson, London

    Google Scholar 

  • Hurmerinta K (1982) Autoradiographic visualization of glycoproteins and glycosaminoglycans in the epitheliomesenchymal interface of developing mouse tooth germ. Scand J Dent Res 90:278–285

    PubMed  CAS  Google Scholar 

  • Iren F van, Essen-Joolen L van, Duyn Schouten P van der, Boers van der, Sluijs P, Bruijn WC de (1979) Sodium and calcium localization in cells and tissues by precipitation with antimonate: a quantitative study. Histochemistry 63:273–294

    PubMed  Google Scholar 

  • Irvin JT (1958) A histological stain for newly calcified tissues. Nature 181:704–705

    Google Scholar 

  • Irving JT (1959) A histological staining method for site of calcification in teeth and bone. Arch Oral Biol 1:89–96

    PubMed  CAS  Google Scholar 

  • Johansen E (1964) Microstructure of enamel and dentin. J Dent Res 43:1007–1020

    PubMed  Google Scholar 

  • Johansen E, Parks HF (1962) Electron microscopic observations of sound human dentin. Arch Oral Biol 7:185–193

    PubMed  CAS  Google Scholar 

  • Jones SJ, Boyde A (1984) Ultrastructure of dentin and dentinogenesis. In: Linde A (ed) Dentin and dentinogenesis, vol I. CRC Press, Boca Raton, pp 81–134

    Google Scholar 

  • Jontell M, Linde A (1983) Non-collagenous proteins from dentinogenically active bovine teeth. Biochem J 214:769–776

    PubMed  CAS  Google Scholar 

  • Jörgensen KD (1950) Macroscopic observations on the formation of the subpulpal wall. Odont Tidskr 2:82–103

    Google Scholar 

  • Kajikawa K, Kakihara S (1974) Odontoblasts and collagen formation: an ultrastructural and autoradiographic study. J Electron Microsc (Tokyo) 23:9–17

    CAS  Google Scholar 

  • Kakei M, Nakahara H (1983) Ultrastructural localization of carbonic anhydrase activity in developing enamel and dentin of the rat incisor. Jap J Oral Biol 25:1129–1133

    CAS  Google Scholar 

  • Kallenbach E (1978) Fine structure and the stratum intermedium, stellate reticulum and outer enamel epithelium in the enamel organ of the kitten. J Anat 126:247–260

    PubMed  CAS  Google Scholar 

  • Kardos TB, Hubbard MJ (1982) Are matrix vesicles anoptic bodies. In: Dixon AD, Sarnat BG (eds) Factors and mechanisms influencing bone growth. Liss, New York, pp 45–60

    Google Scholar 

  • Karim A, Cournil I, Leblond CP (1979) Immunohistochemical localization of procollagens. II. Electron microscopic distribution of procollagen I antigenicity in the odontoblasts and predentin of rat incisor teeth by a direct method using peroxidase linked antibodies. J Histochem Cytochem 27:1070–1083

    PubMed  CAS  Google Scholar 

  • Kashiwa HK, Sigman MD Jr (1966) Calcium localized in odontogenic cells of rat mandibular teeth by the glyoxal bis (2-hydroxyanil) method. J Dent Res 45:1796–1799

    PubMed  CAS  Google Scholar 

  • Katchburian E (1972) Membrane-bound bodies as initiators of mineralization of dentine. Am J’ Anat 116:285–302

    Google Scholar 

  • Katchburian E, Burgess AMC (1977) Fine structure of contacts between ameloblasts and odontoblasts in the rat tooth germ. Arch Oral Biol 22:551–553

    PubMed  CAS  Google Scholar 

  • Katchburian E, Holt SJ (1968) Ultrastructural studies on lysosomes and acid phosphatase in odonto blasts. In: Symons NBB (ed) Dentine and pulp: their structure and reactions. Livingstone, Edinburgh, pp 43–57

    Google Scholar 

  • Katchburian E, Severs NJ (1982) Membranes of matrix vesicles in early developing dentine. A freeze fracture study. Cell Biol Int Rep 6:941–950

    PubMed  CAS  Google Scholar 

  • Kawasaki K (1975) On the configuration of incremental lines in human dentin as revealed by tetracycline labeling. J Anat 119:61–66

    PubMed  CAS  Google Scholar 

  • Kawasaki K, Tanaka S, Ishikawa T (1977) On the incremental lines in human dentine as revealed by tetracycline labelling. J Anat 123:427–436

    PubMed  CAS  Google Scholar 

  • Kefalides NA (1973) Structure and biosynthesis of basement membranes. Int Rev Connect Tissue Res 6:63–104

    PubMed  CAS  Google Scholar 

  • Kerebel B, Grimbert L (1958) Histogenèse de l’émail. Rev Franc Odonto-Stomat 5:1093–1124

    Google Scholar 

  • Kline LW, Thomas NR (1977) The role of calcitonin in the calcification of dentin matrix. J Dent Res 56:862–865

    PubMed  CAS  Google Scholar 

  • Koch W (1967) In vitro differentiation of tooth rudiments of embryonic mice. J Exp Zool 165:155–170

    PubMed  CAS  Google Scholar 

  • Kogaya Y, Furuhashi K (1985) Ultrastructural distribution of glycosaminoglycans associated with matrix vesicle-mediated calcification in mouse progenitor predentine. Calcif Tissue Int 37:36–41

    PubMed  CAS  Google Scholar 

  • Köling A (1983) “Membrane structures in the human pulp-dentin region. An electron microscopic investigation of permanent teeth using the freeze fracture technique”; Doctoral thesis. Universitet Centraltryckeriet, Uppsala

    Google Scholar 

  • Kollar EJ (1972) Histogenic aspects of dermal-epidermal interactions. In: Slavkin HC, Bavetta LA (eds): Developmental aspects of oral biology. Academic, New York

    Google Scholar 

  • Kollar EJ, Baird G (1969) The influence of the dental papilla on the development of tooth shape in embryonic mouse tooth germs. J Embryol Exp Morphol 24:131–148

    Google Scholar 

  • Kollar EJ, Baird G (1970a) Tissue interactions in embryonic mouse tooth germs. I. Reorganization of the dental epithelium during tooth-germ reconstruction. J Embryol Exp Morphol 24:159–171

    PubMed  CAS  Google Scholar 

  • Kollar EJ, Baird G (1970b) Tissue interactions in embryonic mouse tooth germs. II. The inductive role of the dental papilla. J Embryol Exp Morphol 24:173–186

    PubMed  CAS  Google Scholar 

  • Kollar EJ, Lumsden AGS (1979) Tooth morphogenesis: the role of the innervation during induction and pattern formation. J Biol Buccale 7:49–60

    PubMed  CAS  Google Scholar 

  • Korff K von (1905) Die Entwicklung des Zahnbeines und Knochengrundsubstanz der Saugetiere. Arch Mikrok Anat Entwicklsmechanik 67:1–17

    Google Scholar 

  • Kramer IRH (1960) The vascular architecture of the human dental pulp. Arch Oral Biol 2:177–189

    PubMed  CAS  Google Scholar 

  • Kudo N (1975) Effect of colchicine on the secretion of matrices of dentine and enamel in the rat incisor: an autoradiographic study using (3H)-proline. Calcif Tissue Res 18:37–46

    PubMed  CAS  Google Scholar 

  • Lapiere CM, Lenaers A, Kohn LD (1971) Procollagen peptidase: an enzyme exicising the coordination peptides of procollagen. Proc Natl Acad Sci USA 68:3054–3058

    PubMed  CAS  Google Scholar 

  • Larsson A, Bloom GD (1973) Studies on dentinogenesis in the rat. Fine structure of developing odontoblasts arid predentine in relation to the mineralization process. Z Anat Entwickl Gesch 139:227–246

    CAS  Google Scholar 

  • Lau EC (1983) Glycosaminoglycanes dans les ébauches dentaires de souris et leurs constituants dissociés. Etude biochimique, histochimique et autoradiographique. These doct, 3ème cycle. Sciences Université de Strasbourg, Strasbourg

    Google Scholar 

  • Lau EC, Ruch JV (1983) Glycosaminoglycans in embryonic mouse teeth and the dissociated dental constituents. Differentiation 23:234–242

    PubMed  CAS  Google Scholar 

  • Lavelle CLB, Shellis RP, Poole DFG (1977) Evolutionary changes to the primate skull and dentition. Thomas, Springfield/Illinois

    Google Scholar 

  • Lazarides E, Granger BL (1983) Transcytoplasmic integration in avian erythrocytes and striated muscle: the role of intermediate filaments. Modern cell biology, vol IIG. Liss, New York, pp 143–162

    Google Scholar 

  • Leblond CP, Weinstock M (1976) A comparative study of dentin and bone formation. In: Bourne GH (ed) The biochemistry and physiology of bone, 2nd edn, vol IV. Academic, New York, pp 516–562

    Google Scholar 

  • Lechner JH, Kalnitsky G (1981) The presence of large amounts of type III collagen in bovine dental pulp and its significance with regard to the mechanism of dentinogenesis. Arch Oral Biol 26:265–273

    PubMed  CAS  Google Scholar 

  • Lee SL, Glonek T, Glimcher MJ (1983) 31P nuclear magnetic resonance spectroscopic evidence for ternary complex formation of fetal dentin phosphoprotein with calcium and inorganic orthophosphate ions. Calcif Tissue Int 35:815–818

    PubMed  CAS  Google Scholar 

  • Lefèvre R, Frank RM, Voegel JC (1976) The study of human dentine with secondary ion microscopy and electron diffraction. Calcif Tissue Res 19:251–261

    PubMed  Google Scholar 

  • Lehner J, Plenk H (1936) Die Zahne. In: Möllendorff W von (ed) Hdbuch Mikr Anat Menschen, Bd V. Springer, Berlin, pp 449–708

    Google Scholar 

  • Lenz H (1959) Elektronenmikroskopische Untersuchungen der Dentinentwicklung. Dtsche Zahn Mund Kieferheilk 30:367–381

    Google Scholar 

  • Lesot H (1980) Caractérisation des types de collagène de l’ébauche dentaire et localisation par immunofluorescence indirecte des collagènes, de la laminine et de la fibronectine; Thèse doct état es sciences. Université de Strasbourg, Strasbourg

    Google Scholar 

  • Lesot H, Ruch JV (1979) Analyse des types de collagènes synthétisés par l’ébauche dentaire et ses constituants dissocies chez l’embryon de souris. Biol Cell 34:23–38

    CAS  Google Scholar 

  • Lesot H, Mark K von der, Ruch JV (1978) Localisation par immunofluorescence des types de collagène synthétisés par l’ebauche dentaire chez l’embryon de souris. CR Ac Sciences (Paris) [série D] 286:765–768

    CAS  Google Scholar 

  • Lesot H, Osman M, Ruch JV (1981) Immunofluorescent localization of collagens, fibronectin and laminin during terminal differentiation of odontoblasts. Dev Biol 82:371–381

    PubMed  CAS  Google Scholar 

  • Lesot H, Meyer JM, Ruch JV, Weber K, Osborn M (1982) Immunofluorescent localization of vimentin, prekeratin and actin during odontoblast and ameloblast differentiation. Differentiation 21:133–137

    PubMed  CAS  Google Scholar 

  • Lester KS (1969) The incorporation of epithelial cells by cementum. J Ultrastruct Res 27:63–87

    Google Scholar 

  • Lester KS, Boyde A (1967) Electron microscopy of predentinal surfaces. Calcif Tissue Res 1:44–54

    PubMed  CAS  Google Scholar 

  • Lester KS, Boyde A (1968) The surface morphology of some crystalline components of dentine. In: Symons NBB (ed) Dentine and pulp: their structure and reactions. Livingstone, London, pp 197–219

    Google Scholar 

  • Leuwenhoek A van (1675) Microscopical observations on the structure of teeth and other bones. Phil Trans Martyn (London) 10:1002–1003

    Google Scholar 

  • Linde A (1973) A study of the dental pulp glycosaminoglycans from permanent human teeth and rat and rabbit incisors. Arch Oral Biol 18:49–59

    PubMed  CAS  Google Scholar 

  • Linde A (1982) On enzymes associated with biological calcification. In: Veis A (ed) The chemistry and biology of mineralized connective tissue. Elsevier, North Holland New York, pp 559–570

    Google Scholar 

  • Linde A (1984) Non-collagenous proteins and proteoglycans in dentinogenesis. In: Linde A (ed) Dentin and dentinogenesis, vol II. CRC Press, Boca Raton, pp 55–92

    Google Scholar 

  • Linde A (1985) The extracéllular matrix of the dental pulp and dentin. J Dent Res 64:523–529

    PubMed  Google Scholar 

  • Linde A, Gränström G (1978) Odontoblast alkaline phosphatases and Ca2+ transport. J Biol Buccale 6:293–308

    PubMed  CAS  Google Scholar 

  • Linde A, Magnusson B (1975) Inhibition studies of alkaline phosphatase in hard tissue-forming cells. J Histochem Cytochem 23:342–347

    PubMed  CAS  Google Scholar 

  • Linde A, Persliden B (1977) Cathepsin D activity in isolated odontoblasts. Calcif Tissue Res 23:33–38

    PubMed  CAS  Google Scholar 

  • Linde A, Bhown M, Butler WT (1980) Noncollagenous proteins of dentin. A reexamination of proteins from rat incisor dentin utilizing techniques to avoid artifacts. J Biol Chem 255:5931–5942

    PubMed  CAS  Google Scholar 

  • Linde A, Bhown M, Cothran WC, Höglund A, Butler WT (1982a) Evidence for several earboxyglutamic acid containing proteins in dentin. Biochim Biophys Acta 704:235–239

    PubMed  CAS  Google Scholar 

  • Linde A, Johansson S, Jonsson R, Jontell M (1982b) Localization of fibronectin during dentinogenesis in rat incisor. Arch Oral Biol 27:1069–1073

    PubMed  CAS  Google Scholar 

  • Linder E, Vaheri A, Ruoslahti E, Wartiovaara J (1975) Distribution of fibroblast surface antigen in the developing chick embryo. J Exp Med 142:41–49

    PubMed  CAS  Google Scholar 

  • Lindskog S, Hammarström L (1984) Enzyme histochemistry of Hertwig’s epithelial root sheath in monkeys. In: Belcourt AB, Ruch JV (eds) Tooth morphogenesis and differentiation. Inserm, Paris, 125:527–534

    Google Scholar 

  • Linsenmayer TF (1981) Collagen. In: Hay ED (ed) Cell biology of extracellular matrix. Plenum, New York, pp 5–37

    Google Scholar 

  • Magloire H (1983) Elaboration de la trame organique prédentinaire in vitro. Ultrastructure, cytochimie, immunochimie; These doct sciences odont. Université Lyon, Lyon

    Google Scholar 

  • Magloire H, Joffre A, Grimaud J A, Herbage D, Couble ML, Chavrier C, Dumont J (1981) Synthesis of type I collagen by human odontoblast-like cells in explant culture: light and electron microscope immunotyping. Cell Mol Biol 27:429–435

    CAS  Google Scholar 

  • Magloire H, Joffre A, Grimaud J A, Herbage D, Couble ML, Chavrier C (1982) Distribution of type III collagen in the pulp parenchyma of the human developing tooth. Light and electron microscope immunotyping. Histochemistry 74:319–328

    PubMed  CAS  Google Scholar 

  • Marchi F, Leblond CP (1983) Collagen biosynthesis and assembly into fibrils as shown by ultrastructural and 3H-proline radioautographic studies on the fibroblasts of the rat foot pad. Am J Anat 168:167–197

    PubMed  CAS  Google Scholar 

  • Marchi F, Leblond CP (1984) Radioautography characterization of successive compartments along the rough endoplasmic reticulum-Golgi pathway of collagen precursors in foot pad fibroblasts of (3H)proline-injected rats. J Cell Biol 98:1705–1709

    PubMed  CAS  Google Scholar 

  • Marshall AF, Lawless KR (1981) TEM study of the central dark line in enamel crystallite. J Dent Res 60:1173–1182

    Google Scholar 

  • Martens P (1968) Human dentinogenesis with special regard to the formation of peritubular crown dentine and zones in fetal deciduous and unabraded permanent teeth. Scand J Dent Res 76:5–169 (suppl)

    CAS  Google Scholar 

  • Matthiessen ME, Bulow von FA (1970) The ultrastructure of human fetal odontoblasts. Z Zellforsch Mikrosk Anat 105:569–578

    PubMed  CAS  Google Scholar 

  • Mayne R, Vail MS, Miller EJ (1975) Analysis of changes in collagen biosynthesis that occur when chick chondrocytes are grown in 5-bromo-2’-deoxyuridine. Proc Natl Acad Sci USA 72:4511–4515

    PubMed  CAS  Google Scholar 

  • McDougall M, Zeichner-daved M, Slavkin HC (1983) In situ localization of dentine phosphoprotein during murine tooth organ development. Calcif Tissue Int 35:663 (abstract)

    Google Scholar 

  • Mcintosh JR (1983) The centrosome as an organizer of the cytoskeleton. In: Mcintosh JR, Satir BH (eds) Modern cell biology, vol II. Liss, New York, pp 115–142

    Google Scholar 

  • Meyer JM, Fabre M, Staubli A, Ruch JV (1977) Relations cellulaires au cours de l’odontogenèse. J Biol Buccale 5:107–119

    PubMed  CAS  Google Scholar 

  • Meyer JM, Stäubli A, Ruch JV (1981) Ultrastructural localization of concanavalin A binding sites on the surface of differentiating odontoblasts. Biol Cell 42:193–196

    CAS  Google Scholar 

  • Miake Y, Yanagisawa T, Takuma S (1982) Electron microscopic study on the effect of vinblastine on young odontoblasts in rat incisor. J Biol Buccale 10:319–330

    PubMed  CAS  Google Scholar 

  • Miller W (1969) Inductive changes in early tooth development. I. A study of mouse tooth development on the chick chorio-allantois. J Dent Res 48:719–726

    PubMed  CAS  Google Scholar 

  • Moss ML (1974) Studies of dentine. I. Mantle dentin. Acta Anat 87:481–490

    PubMed  CAS  Google Scholar 

  • Munhoz COG, Leblond CP (1974) Deposition of calcium phosphate into dentin and enamel as shown by radioautography of sections of incisor teeth following injection of 45Ca into rats. Calcif Tissue Res 15:221–235

    PubMed  CAS  Google Scholar 

  • Munksgaard EC, Rhodes M, Mayne R, Butler WT (1978) Collagen synthesis and secretion by rat odontoblasts in organ culture. Eur J Biochem 82:609–617

    PubMed  CAS  Google Scholar 

  • Nagai N (1970) Ultrastructural localization of acid phosphatase in odontoblasts of young rat incisors. Bull Tokyo Dent Coll 11:85–120

    PubMed  CAS  Google Scholar 

  • Nagai N, Frank RM (1974) Electron microscopic autoradiography of 45Ca during dentinogenesis. Cell Tissue Res 155:513–523

    PubMed  CAS  Google Scholar 

  • Nagai N, Takuma S, Goto Y, Ogiwara H (1974) Electron microscopy of dentine and predentine of developing rat molars stained with ruthenium red. J Biol Buccale 2:73–83

    PubMed  CAS  Google Scholar 

  • Nakahara H (1982) Electron microscopic studies of the lattice image and central dark line of crystallites in sound and carious human dentine. Bull Josai Dent Univ 11:209–215

    CAS  Google Scholar 

  • Nalbandian J (1968) The ultrastructure of odontoblasts and dentinogenesis. In: Finn SB (ed) Biology of the dental pulp organ. A symposium. University of Alabama Press, Tuscaloosa, pp 195–210

    Google Scholar 

  • Neuman WF, Neutoan NW (1958) The chemical dynamics of bone mineral. University of Chicago Press, Chicago

    Google Scholar 

  • Nicholson WAP, Ashton BA, Höhling HJ, Quint P, Schreiber J, Ashton K, Boyde A (1977) Electron microprobe investigations into the processes of hard tissue formation. Cell Tissue Res 177:331–339

    PubMed  CAS  Google Scholar 

  • Nikiforuk G, Fraser D (1979) Etiology of enamel hypoplasia and interglobular dentin: the roles of hypocalcemia and hypophosphatemia. Metab Bone Dis Rel Res 2:17–23

    Google Scholar 

  • Nygren H, Hansson HA, Linde A (1976) Ultrastructural localization of proteoglycans in the odontoblast-predentin region of rat incisor. Cell Tissue Res 168:277–287

    PubMed  CAS  Google Scholar 

  • Nygren H, Persliden B, Hansson HA, Linde A (1979) Cathepsin D: ultra-immunohistochemical localization in dentinogenesis. Calcif Tissue Int 29:251–256

    PubMed  CAS  Google Scholar 

  • Nylen MU, Scott DB (1958) An electron microscopic study of the early stages of dentinogenesis. Public Health Serv Publ No 613, Washington/DC

    Google Scholar 

  • Nylen MU, Scott DB (1960) Electron microscopic studies of odontogenesis. J Indiana Dent Assoc 39:406–421

    Google Scholar 

  • Olsen BR (1981) Collagen biosynthesis. In: Hay ED (ed) Cell biology of extracellular matrix. Plenum Press, New York, pp 139–177

    Google Scholar 

  • Ooë T, Gohdo S (1984) The development of the human interradicular dentine as revealed by tetracycline labelling. Arch Oral Biol 29:257–262

    PubMed  Google Scholar 

  • Orams HJ (1978) The ultrastructure of tissues at the epithelial mesenchymal interface in developing rat incisors. Arch Oral Biol 23:39–44.

    PubMed  CAS  Google Scholar 

  • Orban B, Müller E (1929) The development of the bifurcation of multirooted teeth. J Am Dent Assoc 16:297–319

    Google Scholar 

  • Osman M, Ruch JV (1980) Secretion of basal lamina by trypsin-isolated embryonic mouse molar epithelia cultured in vitro. Dev Biol 75:467–470

    PubMed  CAS  Google Scholar 

  • Osman M, Ruch JV (1981a) 3H-glucosamine and 3H-proline radioautography by embryonic mouse dental basement membrane. J Craniofac Genet Dev Biol 1:95–108

    PubMed  CAS  Google Scholar 

  • Osman M, Ruch JV (1981b) Behavior of odontoblasts and basal lamina of trypsin or EDTA-isolated mouse dental papillae in short-term culture. J Dent Res 60 :1015–1027

    PubMed  CAS  Google Scholar 

  • Osman M, Meyer JM, Staubli A, Iluch JV (1981c) Cytochemical localization of adenylate cyclase in embryonic mouse molars. Acta Histochem 68:91–102

    PubMed  CAS  Google Scholar 

  • Owens PDA (1973) Mineralization in the roots of human deciduous teeth demonstrated by tetracycline labeling. Arch Oral Biol 18:889–897

    PubMed  CAS  Google Scholar 

  • Ozawa H, Yajima, T, Kobayashi S (1972) An investigation of the methods for studying calcium localization by means of electron microscopy. J Niigata Shigakai 2:29–42

    Google Scholar 

  • Ozawa H, Yamada H, Yamamoto T (1981) Ultrastructural observations on the location of lead and calcium in the mineralizing dentine of rat incisors. In: Ascenzi A, Bonucci E, Bernard B de (eds) Matrix vesicles. Wichtig, Milan, pp 179–183

    Google Scholar 

  • Pannese E (1960) Observations on the ultrastructure of the enamel organ. I. Stellate reticulum and stratum intermedium. J Ultrastruct Res 3:372–400

    Google Scholar 

  • Pannese E (1962) Observations on the ultrastructure of the enamel organ. III. Internal and external enamel epithelia. J Ultrastruct Res 6:186–204

    PubMed  CAS  Google Scholar 

  • Pearson A A (1977) The early innervation of the developing deciduous teeth. J Anat 123:563–577

    PubMed  CAS  Google Scholar 

  • Penman S, Capco DG, Fey EG, Chatterjee P, Reiter T, Ermish S, Wan K (1983) The three-dimensional structural networks of cytoplasm and nucleus: function in cells and tissue. In: Mcintosh JR, Satir BH (eds) Modern cell biology, vol II. Liss, New York, pp 385–405

    Google Scholar 

  • Peress NS, Anderson HC, Sajdera SW (1974) The lipids of matrix vesicles from bovine fetal epiphyseal cartilage. Calcif Tissue Res 14:275–283

    PubMed  CAS  Google Scholar 

  • Piez KA (1976) Primary structure. In: Ramanchandran GN, Reddi AH (ed) Biochemistry of collagen. Plenum, New York, pp 1–44

    Google Scholar 

  • Porter KR, Beckerle M, McNiven M (1983) The cytoplasmic matrix. In: Mcintosh JR, Satir BH (eds) Modern cell biology, vol II. Liss, New York, pp 259–302

    Google Scholar 

  • Posner AS, Tannenbaum PJ (1984) The mineral phase of dentin. In: Linde A (ed) Dentin and dentinogenesis, vol 2. CRC Press, Boca Raton, pp 17–36

    Google Scholar 

  • Price PA, Otsuka AS, Poser JW, Kirstaponis J, Raman N (1976) Characterization of a α-carboxyglutamic acid-containing protein from bone. Proc Natl Acad Sci USA 73:1447–1451

    PubMed  CAS  Google Scholar 

  • Prout RES, Odugata AA, Trig FC (1973) Lipid analysis of rat enamel and dentine. Arch Oral Biol 18:373–380

    PubMed  CAS  Google Scholar 

  • Quinaux N, Richelle LJ (1967) X-ray Diffraction and infrared analysis of bone: specific gravity fractions in the growing rat. Isr J Med Sci 3:667–690

    Google Scholar 

  • Rahemtulla F, Prince CW, Butler WT (1984) Isolation and partial characterization of proteoglycans from rat incisors. Biochem J 218:877–885

    PubMed  CAS  Google Scholar 

  • Ramachandran GN, Ramakrishnan CF (1976) Molecular structure. In: Ramachandran GN, Reddi AH (eds) Biochemistry of collagen. Plenum, New York, pp 45–85

    Google Scholar 

  • Raven CP (1932) Zur Entwicklung der Ganglienleiste. I. Die Kinematik der Ganglienleistenentwicklung bei den Urodelen. Arch Entwickl Mech Org 125:210–291

    Google Scholar 

  • Reith EJ (1968a) Ultrastructural aspects of dentinogenesis. In: Symons NBB (ed) Dentine and pulp: their structure and reaction. Livingstone, Edinburgh, pp 19–57

    Google Scholar 

  • Reith EJ (1968b) Collagen formation in developing molar teeth of rats. J Ultrastruct Res 21:383–414

    Google Scholar 

  • Reith EJ (1976) The binding of calcium with the Golgi saccules of the rat odontoblast. Am J Anat 147:267–272

    PubMed  CAS  Google Scholar 

  • Retzius A (1837) Bemerkungen liber den inneren Bau der Zähne mit besonderer Berücksichtigung auf den im Zahnknochen vorkommenden Röhrenbau. Arch Anat Physiol 4:486–571

    Google Scholar 

  • Revel JP, Karnovsky MJ (1967) Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J Cell Biol 33:C7–C12

    PubMed  CAS  Google Scholar 

  • Robison R (1923) The possible significance of hexose phosphoric esters in ossification. Biochem J 17:286–293

    PubMed  CAS  Google Scholar 

  • Rönnholm E (1962) An electron microscopic study of the amelogenesis in human teeth. I. The fine structure of the ameloblasts. J Ultrastruct Res 6:229–248

    PubMed  Google Scholar 

  • Rosenberg GD, Simmons DJ (1980) Rhythmic dentinogenesis in the rabbit incisor: circadian, ultradian and infradian periods. Calcif Tissue Int 32:29–44

    PubMed  CAS  Google Scholar 

  • Roth TF, Porter KL (1964) Yolk protein uptake in the oocyte of the mosquito Aedes aegypti L. J Cell Biol 20:313–332

    PubMed  CAS  Google Scholar 

  • Rothman JE (1981) The Golgi apparatus: two organelles in tandem. Science 213:1219

    Google Scholar 

  • Roufosse AH, Landis WJ, Sabine WK, Glimcher MJ (1979) Identification of brushite in newly deposited bone mineral from embryonic chicks. J Ultrastruct Res 68:235–255

    PubMed  CAS  Google Scholar 

  • Royer L (1928) Recherches experimentales sur Fepitaxie ou orientation mutuelle de cristaux d’especes differentes. Bull Soc Franc Mineral 51:7–159

    CAS  Google Scholar 

  • Ruch JV, Karcher-Djuricic V (1971) Mise en evidence d’un rôle spécifique de l’épithélium adamantin dans la differentiation et le maintien des odontoblastes. Ann Embryol Morph 4:359–366

    Google Scholar 

  • Ruch JV, Karcher-Djuricic V, Gerber R (1972) Quelques aspects du rôle de la prédentine dans la differentiation des adamantoblastes. Arch Anat Microsc Morphol Exp 61:127–138

    PubMed  CAS  Google Scholar 

  • Ruch JV, Karcher-Djuricic V, Gerber R (1973) Les determinismes de la morphogenèse et des cytodifferenciations des ebauches dentaires-de souris. J Biol Buccale 1:45–56

    PubMed  CAS  Google Scholar 

  • Ruch JV, Karcher-Djuricic V, Staubli A, Fabre M (1975) Effects de la cytochalasine et de la colchicine sur les cytodifferentiations dentaires in vitro. Arch Anat Microsc Morphol Exp 64:113–134

    PubMed  CAS  Google Scholar 

  • Ruch JV, Lesot H, Karcher-Djuricic V, Meyer JM, Mark M (1983) Epithelial-mesenchymal interactions in tooth germs: mechanisms of differentiation. J Biol Buccale 11:173–193

    PubMed  CAS  Google Scholar 

  • Ruch JV, Lesot H, Karcher-Djuricic V, Meyer JM (1984) Extracellular matrix-mediated interactions during odontogenesis. In: Kemp RB, Hinchliffe JR (eds) Matrices and cell differentiation. Liss, New York, pp 103–114

    Google Scholar 

  • Ruoslahti E (1981) Fibronectin. J Oral Pathol 10:3–13

    PubMed  CAS  Google Scholar 

  • Sasaki T, Ishida I, Higashi S (1982) Ultrastructure and cytochemistry on old odontoblasts in rat incisors. J Electron Microsc (Tokyo) 31:378–388

    CAS  Google Scholar 

  • Sasaki T, Tominaga H, Higashi S (1984) Endocytic activity of kitten odontoblasts in early dentinogenesis. 1. Thin section and freeze-fracture study. J Anat 138:485–492

    Google Scholar 

  • Sattelberg C, Turner DF (1984) Anatomical evidence for the existence of zonula occludens between pulpal odontoblasts. J Dent Res 63:225 (abstract)

    Google Scholar 

  • Sauderns RL (de) CH, Rockert HOE (1967) Vascular supply of the dental tissues including lymphatics. In: Miles AEW (ed) Structural and chemical organization of teeth, vol I. Academic, New York, pp 199–245

    Google Scholar 

  • Saxen L, Karkinen-Jaaskelannen M, Lehtonen E, Nordling S, Wartlovaara J (1976) Inductive tissue interactions. In: Poste G, Nicolson GL (eds) Inductive tissue interactions. North Holland, Amsterdam

    Google Scholar 

  • Schakelford JM (1971) The structure of Tomes’ granular layer in dogs premolar teeth. Anat Rec 170:357–368

    Google Scholar 

  • Schleuter RJ, Veis A (1964) The macromolecular organization of dentin matrix collagen II. Periodate degradation and carbohydrate cross-linking. Biochemistry 3:1657–1665

    Google Scholar 

  • Schmidt WJ (1969) Die kristalline Struktur der Globuli im Zahnbein des Menschen. Z Zellforsch 97:313–320

    PubMed  CAS  Google Scholar 

  • Schmidt WJ, Keil A (1971) Polarizing microscopy of dental tissues, 1st edn. Pergamon, New York

    Google Scholar 

  • Schour I (1960) Noyes’ oral histology and embryology, 8th edn. Lea and Febiger, Philadelphia

    Google Scholar 

  • Schour I, Poncher HG (1937a) The rate of apposition of human enamel and dentin as measured by the effects of acute fluorosis. Am J Dis Child 54:756–776

    Google Scholar 

  • Schour I, Chandler SB, Tweedy WR (1937b) Changes in the teeth following parathyroidectomy. Am Pathol 13:945–970

    CAS  Google Scholar 

  • Schroeder L, Frank RM (1985) High-resolution transmission electron microscopy of adult human peritubular dentine. Cell Tissue Res 242:449–451

    PubMed  CAS  Google Scholar 

  • Scott JH, Symons NBB (1982) Introduction to dental anatomy, 9th edn. Churchill and Livingstone, Edinburgh London

    Google Scholar 

  • Sellman S (1946) Some experiments on the determination of the larval teeth in Amblystoma mexicanum. Odont Tidskr 54:1–69

    Google Scholar 

  • Selvig KA (1970) Periodic lattice images of hydroxyapatite crystals in human bone and dental hard tissues. Calcif Tissue Res 6:227–228

    PubMed  CAS  Google Scholar 

  • Serres A (1817) Essai sur l’Anatomie et la Physiologie des Dents. Mequignon-Marvis ed Paris

    Google Scholar 

  • Shapiro IM, Wuthier RE, Irving JT (1966) A study of the phospholipids of bovine dental tissues. I. Enamel and dentin. Arch Oral Biol 11:501–512

    PubMed  CAS  Google Scholar 

  • Silva DG, Kailis DG (1972) Ultrastructural studies on the cervical loop and the development of the amelo-dentinal junction in the cat. Arch Oral Biol 17:279–289

    PubMed  CAS  Google Scholar 

  • Sisca RF, Provenza DY (1972) Initial dentin formation in human deciduous teeth. An electron microscope study. Calcif Tissue Res 9:1–16

    PubMed  CAS  Google Scholar 

  • Slautterback DB (1963) Cytoplasmic microtubules. I. Hydra. J Cell Biol 18:367–388

    PubMed  CAS  Google Scholar 

  • Slavkin HC (1972) Intercellular communication during odontogenesis. In: Slavkin HC, Bavetta LA (eds) Developmental aspects of oral biology. Academic, New York

    Google Scholar 

  • Slavkin HC (1974) Embryonic tooth formation. A tool for developmental biology. In: Melcher AH, Zarb GA (eds) Oral sciences reviews, vol IV. Munksgaard, Copenhagen

    Google Scholar 

  • Slavkin HC, Bringas P (1976). Epithelial-mesenchyme interactions during dentinogenesis. IV. Morphological evidence for direct heterotopic cell-cell contact. Dev Biol 50:428–442

    PubMed  CAS  Google Scholar 

  • Slavkin HC, Bringas P, Croissant R, Bavetta LA (1972) Epithelial-mesenchymal interactions during odontogenesis. Dev 1:139–161

    Google Scholar 

  • Slavkin HC, Matosian P, Wilson P, Brigas P, Mino W, Croissant RD, Guenther H (1975) Epithelial specific extracellular matrix influences on mesenchyme collagen biosynthesis in vitro. In: Slavkin HC, Greulich RC (eds) Extracellular matrix influences on gene expression. Academic, New York, pp 237–251

    Google Scholar 

  • Slavkin HC, Trump GN, Brownell A, Sorgente N (1977) Epithelial mesenchymal interactions: mesenchymal specificity. In: Lash JW, Burger MM (eds) Cell and tissue interactions, vol 32. Raven, New York, pp 29–46

    Google Scholar 

  • Slavkin HC, Cummings F, Bringas P, Honig LS (1982) Epithelial derived basal lamina regulation of mesenchymal cell differentiation. In: Weber R, Burger A (eds) Proc Int Soc Develop Biol, IX Congress. Liss, New York

    Google Scholar 

  • Sodek J, Mandell SM (1982) The synthesis and maturation of type I, type V and l(I)-trimer collagen in rat predentine in vivo. In: Veis A (ed) The chemistry and biology of mineralized connective tissue. Elsevier, North Holland New York, pp 19–21

    Google Scholar 

  • Spector M (1975) High resolution electron microscope study of lattice images in biological apatites. J Microsc 103:55–62

    PubMed  CAS  Google Scholar 

  • Stenman S, Vaheri A (1978) Distribution of major connective tissue protein, fibronectin in normal tissues. J Exp Med 147:1054–1064

    PubMed  CAS  Google Scholar 

  • Stetler-Stevenson WG, Veis A (1983) Bovine dentin phosphoryn: composition and molecular weight. Biochemistry 22:4326–4335

    PubMed  CAS  Google Scholar 

  • Stone LS (1926) Further experiments on the extirpation and transplantation of mesectoderm in Amblystoma punctatum. J Exp Zool 44:95–131

    Google Scholar 

  • Symons NBB (1961) A histochemical study of the intertubular and peritubular matrices in normal human dentine. Arch Oral Biol 5:241–250

    Google Scholar 

  • Takagi M, Parmley RT, Denys FR (1981) Ultrastructural localization of complex carbohydrates in odontoblasts, predentin and dentin. J Histochem Cytochem 29:747–758

    PubMed  CAS  Google Scholar 

  • Takahashi K (1985) Vascular architecture of dog pulp using corrosion resin cast examined under a scanning electron microscope. J Dent Res 64:579–584

    PubMed  Google Scholar 

  • Takuma S, Eda S (1966) Structure and development of the peritubular matrix of dentin. J Dent Res 45:683–692

    Google Scholar 

  • Takuma S, Nagai N (1971) Ultrastructure of rat odontoblasts in various stages in their development and maturation. Arch Oral Biol 16:993–1011

    PubMed  CAS  Google Scholar 

  • Tanaka T (1980) The origin and localization of dentinal fluid in developing rat molar teeth studied with lanthanum as a tracer. Arch Oral Biol 25:153–162

    PubMed  CAS  Google Scholar 

  • Ten Cate AR (1972) An analysis of Tomes’ granular layer. Anat Rec 172:137–149

    PubMed  Google Scholar 

  • Ten Cate AR (1978) A fine structural study of coronal and root dentinogenesis in the mouse: observations on the so-called von Korff fibres and their contribution to mantle dentine. J Anat 125:183–197

    PubMed  Google Scholar 

  • Ten Cate AR (1980) Oral histology, development, structure and function. Mosby, St Louis

    Google Scholar 

  • Ten Cate AR, Melcher AH, Pudy G, Wagner D (1970) The nonfibrous nature of the von Korff fibers in developing dentine. A light and electron microscope study. Anat Rec 168:491–523

    PubMed  Google Scholar 

  • Termine JD (1972) Mineral chemistry and skeletal biology. Clin Orthop 85:207–241

    PubMed  CAS  Google Scholar 

  • Termine JD, Coon KM (1976) Inhibition of apatite formation by phosphorylated metabolites and macromolecules. Calcif Tissue Res 22:149–157

    PubMed  CAS  Google Scholar 

  • Thesleff I (1978) Role of the basement membrane in odontoblast differentiation. J Biol Buccale 6:241–249

    PubMed  CAS  Google Scholar 

  • Thesleff I, Hurmerinta K (1981) Tissue interactions in tooth development. Differentiation 18:75–88

    PubMed  CAS  Google Scholar 

  • Thesleff I, Partanen AM (1984) Growth factors and tooth morphogenesis. In: Belcourt A, Ruch JV (eds) Tooth morphogenesis and differentiation, vol 125. Inserm, Paris, pp 73–85.

    Google Scholar 

  • Thesleff I, Pratt RM (1980) Tunicamycin-induced alterations in basement membrane formation during odontoblast differentiation. Dev Biol 80:175–185

    PubMed  CAS  Google Scholar 

  • Thesleff I, Stenman S, Vaheri A, Timpl R (1979) Changes in the matrix proteins, fibronectin and collagen during differentiation of mouse tooth germ. Dev Biol 70:116–126

    PubMed  CAS  Google Scholar 

  • Thesleff I, Barrach HJ, Foldart JM, Vaheri A, Pratt RM, Martin GR (1981) Changes in the distribution of type IV collagen, laminin, proteoglycan and fibronectin during mouse tooth development. Dev Biol 81:182–192

    PubMed  CAS  Google Scholar 

  • Timpl R, Rohde H, Robey PG, Rennard SI, Foidart JM, Martin GR (1979) Laminin. A glycoprotein from basement membranes. J Biol Chem 254:9933–9937

    PubMed  CAS  Google Scholar 

  • Tomes J (1856) On the presence of fibrils of soft tissue in the dentinal tubes. Philos Trans R Soc Lond [Biol] 146:515–522

    Google Scholar 

  • Tominaga H, Sasaki T, Higashi S (1984) Ultrastructural changes in odontoblasts during early development. Bull Tokyo Dental Coll 25:9–26

    CAS  Google Scholar 

  • Veis A, Schleuter RJ (1964) The macromolecular organization of dentine matrix collagen. I. Characterization of dentine collagen. Biochemistry 3:1650–1657

    PubMed  CAS  Google Scholar 

  • Veis A, Stetler-Stevenson W, Takagi Y, Sabsay B, Fullerton R (1982) The nature and localization of the phosphorylated proteins of mineralized dentin. In: Veis A (ed) The chemistry and biology of mineralized connective tissues. Elsevier, North Holland New York, pp 377–387

    Google Scholar 

  • Voegel JC, Frank RM (1977) Ultrastructural study of apatite crystal dissolution in human dentine and bone. J Biol Buccale 5:181–194

    PubMed  CAS  Google Scholar 

  • Waldeyer W (1865) Uber den Ossifikationsprocess. Arch Mikr Anat 1:354–375

    Google Scholar 

  • Warshawsky H, Josephsen K (1981) The behavior of substances labeled with 3H-proline and 3Hfucose in the cellular processes of odontoblasts and ameloblasts. Anat Rec 200:1–10

    PubMed  CAS  Google Scholar 

  • Watson ML (1960) The extracellular nature of enamel in the rat. J Biophys Biochem Cytol 7:489–492

    PubMed  CAS  Google Scholar 

  • Watson ML, Avery JK (1954) The development of the hamster lower incisor as observed by electron microscopy. Am J Anat 95:109–162

    PubMed  CAS  Google Scholar 

  • Weidenreich F (1925) Uber den Bau und die Entwicklung des Zahnbeins in der Reihe der Wirbeltiere. Knochenstudien IV. Teil. Z Anat Entwickl Gesch 76:218–260

    Google Scholar 

  • Weinstock A (1972a) Matrix development in mineralizing tissues as shown by radioautography: formation of enamel and dentin. In: Slavkin HC, Bavetta LA (eds) Developmental aspects of oral biology. Academic, New York, pp 201–242

    Google Scholar 

  • Weinstock A (1972b) Elaboration of enamel and dentin matrix glycoproteins. In: Bourne GH (ed) The biochemistry and physiology of bone, vol II. Academic, New York, pp 121–154

    Google Scholar 

  • Weinstock A, Weinstock M, Leblond CP (1972) Radioautographic detection of 3H-fucose incorporation into glycoprotein by odontoblasts and its deposition at the site of the calcification front in dentin. Calcif Tissue Res 8:181–189

    PubMed  CAS  Google Scholar 

  • Weinstock M (1972) Collagen formation – Observations on its intracellular packaging and transport. Z Zellforsch 129:455–470

    PubMed  CAS  Google Scholar 

  • Weinstock M, Leblond CP (1973) Radioautographic visualization of the deposition of a phosphoprotein at the mineralization front in the dentin of the rat incisor. J Cell Biol 56:838–845

    PubMed  CAS  Google Scholar 

  • Weinstock M, Leblond CP (1974) Synthesis, migration and release of precursor collagen by odontoblasts as visualized by radioautography after (3H)-proline administration. J Cell Biol 60:92–127

    PubMed  CAS  Google Scholar 

  • Weiss MP, Voegel JC, Frank RM (1981) Enamel crystallite growth: width and thickness study related to the possible presence of octocalcium phosphate during amelogenesis. J Ultrastruct Res 76:286–292

    PubMed  CAS  Google Scholar 

  • White SW, Hulmes DJS, Miller A, Timmins PA (1977) Collagen-mineral axial relationship in calcified turkey leg tendon by X-ray and neutron diffraction. Nature 266:421–425

    PubMed  CAS  Google Scholar 

  • Whittaker DK, Adams DA (1972) Electron microscopic studies on von Korff fibers in the human developing tooth. Anat Rec 174:175–189

    PubMed  CAS  Google Scholar 

  • Wohllebe M, Carmichael DJ (1978) Type I-trimer and type I collagen in neutral-salt soluble lathyritic rat dentin. Eur J Biochem 92:183–188

    PubMed  CAS  Google Scholar 

  • Wolters JML (1978) The transfilter transmission of 3H-proline labelled material in cultured rat tooth germs. Arch Oral Biol 23:51–55

    PubMed  CAS  Google Scholar 

  • Wolters JML, Mullem PJ van (1978) Electron microscopy of epithelio-mesenchyme intercellular communication in trans-filter cultures of rat tooth germs. Arch Oral Biol 22:705–707

    Google Scholar 

  • Wuthier RE (1984) Lipids in dentinogenesis. In: Linde A (ed) Dentin and dentinogenesis, vol II. CRC Press, Boca Raton, pp 93–106

    Google Scholar 

  • Wuthier RE, Irving (1964) Lipids in developing calf bone. J Dent Res 43:814–815

    Google Scholar 

  • Young RW, Greulich RC (1963) Distinctive autoradiographic patterns of glycine incorporation in rat enamel and dentin matrices. Arch Oral Biol 8:509–521

    PubMed  CAS  Google Scholar 

  • Zaki AE, Weber DF (1985) Fine structure of intercellular junctions in human odontoblasts. J Dent Res 64:237 (abstract)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frank, R.M., Nalbandian, J. (1989). Development of Dentine and Pulp. In: Teeth. Handbook of Microscopic Anatomy, vol 5 / 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83496-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83496-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83498-1

  • Online ISBN: 978-3-642-83496-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics