Skip to main content

Recent Trends in Screen-Film Mammography: Technical Factors and Radiation Dose

  • Chapter
Breast Cancer

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 105))

Abstract

The trend in screen-film mammography is toward high-contrast, high-resolution images. In this article technical factors associated with X-ray equipment and/or the screen-film combination which affects radiographic contrast, blurring (unsharpness), and noise will be reviewed. Radiation dose will be discussed in terms of measurement, calculation, and theoretical risk.

This article is adapted in part from monograph Screen-Film Mammography Update: X-ray Units, Breast Compression Grids, Screen-Film Characteristics and Radiation Dose by A. G. Haus, copyright by the Eastman Kodak Company (1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold BA, Bjarngard BE, Klopping JC (1973) A modified pinhole camera method of investigation of X-ray tube focal spots. Phys Med Biol 18: 540–549

    Article  PubMed  CAS  Google Scholar 

  • Barnes GT, Brezovich IA (1978) The intensity of scattered radiation in mammography. Radiography 126:243–247

    CAS  Google Scholar 

  • Barnes GT (1979) Characteristics of scatter. In: Logan WW, Muntz EP (eds) Reduced dose mammography. Masson, New York, pp 223–242

    Google Scholar 

  • Barnes GT, Chakraborty DP (1982) Radiographic mottle and patient exposure in mammography. Radiology 145: 815–821

    PubMed  CAS  Google Scholar 

  • Boag JW, Stacey AJ, Davis R (1976) Radiation exposure to the patient in xeroradiography. Br J Radiol 49: 253–261

    Article  PubMed  CAS  Google Scholar 

  • Braun M (1978) X-ray tube performance characteristics and their effect on radiologic image quality (recent and future trends in medical imaging). Proc Soc Photo-Opt Instrum Engineers 152:94–103

    Google Scholar 

  • Chan HP, Sepahdari S, Doi K (1983) Physical and clinical evaluation of ultra-high strip-density grids in mammography. Radiology (abstract) 149: 277 (Special Edition)

    Google Scholar 

  • DHEW Publication (NIH) 77–1400 (1977) Final reports of national cancer institute ad hoc working groups on mammography screening for breast cancer and a summary report of their joint findings and recommendations. US Government Printing Office, Washington, DC

    Google Scholar 

  • Dodd GD (1981) Radiation detection and diagnosis of breast cancer. Cancer 47:1766–1769

    Article  PubMed  CAS  Google Scholar 

  • Dubuque GL, Cacak RK, Hendee WR (1977) Backscatter factors in the mammographic energy range. Med Phys 4: 397–399

    Article  PubMed  CAS  Google Scholar 

  • Feig SA (1983) Low-dose mammography: assessment of theoretical risk. In: Feig SA, McLelland R (eds) Breast carcinoma: current diagnosis and treatment. Masson, New York, pp 69–76

    Google Scholar 

  • Fewell TR, Shuping RE (1978) A comparison of mammographic x-ray spectra. Radiology 128: 211–216

    PubMed  CAS  Google Scholar 

  • Fewell TR, Shuping RE (1978) HEW publication (FDA) 79–8071), (Handbook of mammographic x-ray spectra)

    Google Scholar 

  • Fundamentals of Radiography (1980) Health Sciences Markets Division, Eastman Kodak Company, Rochester, Twelfth Edition

    Google Scholar 

  • Hammerstein GR, Miller DW, White DR et al. (1979) Absorbed radiation dose in mammography. Radiology 130:485–491

    PubMed  CAS  Google Scholar 

  • Haus AG, Metz CE, Chiles JT et al. (1976) The effect of x-ray spectra from molybdenum and tungsten target tubes on image quality in mammography. Radiology 118: 705–709

    PubMed  CAS  Google Scholar 

  • Haus AG, Metz CE, Doi K (1977) Determination of x-ray spectra incident on and transmitted through breast tissue. Radiology 124: 511–513

    PubMed  CAS  Google Scholar 

  • Haus AG (1977) The effect of geometric unsharpness in mammography and breast xeroradiography. In: Logan WW (ed) Breast carcinoma. The Radiologist’s expanding role. Wiley, New York, pp 93–108

    Google Scholar 

  • Haus AG, Cowart RW, Dodd GD et al. (1978) A method of evaluating and minimizing geometric unsharpness for mammographic x-ray units. Radiology 128: 775–778

    PubMed  CAS  Google Scholar 

  • Haus AG, Paulus DD, Dodd GD et al. (1979) Magnification mammography: evaluation of screen film and xeroradiographic techniques. Radiology 133: 223–226

    PubMed  CAS  Google Scholar 

  • Haus AG, Meyer J, Guebert DK (1981) Evaluation of the resolution limit for radiological procedures. In: Gray JE, Haus AG, Properzio WS, Mulvaney JA (eds) Application of optical instrumentation in medicine IX. Proc Soc Photo-Opt Instrum Engineers 273:177–185

    Google Scholar 

  • Haus AG (1983) Physical principles and radiation dose in mammography. In: Feig SA, McLelland R (eds) Breast carcinoma: current diagnosis and treatment. Masson, New York, pp 99–114

    Google Scholar 

  • Jans RJ, Butler PF, McCrohan JL Jr (1979) The status of film-screen mammography. Results of the BENT Study. Radiology 132:197–200

    PubMed  CAS  Google Scholar 

  • Jennings RJ, Eastgate RJ, Siedband MP (1981) Optimal x-ray spectra for screen-film mammography. Med Phys 8: 629–639

    Article  PubMed  CAS  Google Scholar 

  • Johnson GA, O’Foghludha F (1980) Simulation of mammographic x-ray spectra. Med Phys 7: 189–195

    Article  PubMed  CAS  Google Scholar 

  • Jones CH (1982) Methods of breast imaging. Phys Med Biol 27: 463–499

    Article  PubMed  CAS  Google Scholar 

  • Lassen M, Gorson RO (1981) Patient dose in diagnostic radiology (refresher course handout at 67th Scientific Assembly and Annual Meeting of the Radiological Society of North America, Chicago)

    Google Scholar 

  • Lester RG (1977) Risk versus benefit in mammography. Radiology 124:1–6

    PubMed  CAS  Google Scholar 

  • Malik S, Masterson ME, Hunt M (1983) Effects of kVp variation and x-ray tube filtration on the mammographic examination application of optical instrumentation in medicine XI. Proc SPIE 419:42–50

    Google Scholar 

  • Miller DW, Masterson ME (1979) Mammography phantom development at the northeast center for radiological physics. In: Logan WW, Muntz EP (eds) Reduced dose mammography. Masson, New York, pp 307–308

    Google Scholar 

  • Muntz EP (May/June) (1979) Relative carcinogenic effects of different mammography techniques. Med Phys 6: 205–210

    Article  PubMed  CAS  Google Scholar 

  • NCRP Report 66 (1980) Mammography. National Council on Radiation Protection and Measurements, Washington, DC

    Google Scholar 

  • Pochin EE (1978) Why be quantitative about radiation risk estimates? Lecture No 2: The Lauriston S. Taylor lecture series in radiation protection and measurements. National Council on Radiation Protection and Measurements

    Google Scholar 

  • Roeck WW, Milne ENC (1978) A highly accurate focal spot camera — laboratory and field model. Radiology 127: 779–783

    PubMed  CAS  Google Scholar 

  • Rossman K (1964) Measurement of the modulation transfer function of radiographic systems containing fluorescent screens. Phys Med Biol 9 (4): 551–557

    Article  Google Scholar 

  • Roth B, Hamilton JF Jr, Bunch CP (1979) Fundamental aspects of mammographic photoreceptors: screens. In: Logan WW, Muntz EP (eds) Reduced dose mammography. Masson, New York, pp 529–536

    Google Scholar 

  • Rothenberg LN, Kirch RLA, Snyder RE (1975) Patient exposures from film and xeroradiographic mammographic techniques. Radiology 117: 701–703

    PubMed  CAS  Google Scholar 

  • Shrivastava PN (1981) Radiation dose in mammography: an energy-balance approach. Radiology 140:483–490

    PubMed  CAS  Google Scholar 

  • Siedband MP, Jennings RJ, Eastgate RJ (1977) X-ray beam filtration for mammography. In: Gray JE, Hendee WR (eds) Application of optical instrumentation in medicine VI. Proc Soc Photo-Opt Instrum Engineers 127: 204–207

    Google Scholar 

  • Seidman H (1980) Statistical and epidemiological data on cancer of the breast. American Cancer Society, New York

    Google Scholar 

  • Stanton L, Day JL, Bratteli SD et al. (1981) Comarison of ion chamber and TLD dosimetry in mammography. Med Phys 8: 792–798

    Article  PubMed  CAS  Google Scholar 

  • Stanton L, Villafana T, Day JL et al. (1984) Dose evaluation in mammography. Radiology 150: 577–584

    PubMed  CAS  Google Scholar 

  • Wayrynen RE (1979) Fundamental aspects of mammographic receptors film process. In: Logan WW, Muntz EP (eds) Reduced dose mammography. Masson, New York, pp 521–528

    Google Scholar 

  • White DR, Martin RJ, Darlison R (1977) Epoxy resin based tissue substitutes. Br J Radiol 50: 814–821

    Article  PubMed  CAS  Google Scholar 

  • Yester MV, Barnes GT, King MA (1981) Experimental measurements of the scatter reduction obtained in mammography with a scanning multiple slit assembly. Med Phys 8:158–162

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Haus, A.G. (1987). Recent Trends in Screen-Film Mammography: Technical Factors and Radiation Dose. In: Brünner, S., Langfeldt, B. (eds) Breast Cancer. Recent Results in Cancer Research, vol 105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82964-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82964-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82966-6

  • Online ISBN: 978-3-642-82964-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics