Skip to main content

Heat Delivery and Thermometry in Clinical Hyperthermia

  • Chapter
Hyperthermia and the Therapy of Malignant Tumors

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 104))

Abstract

The potential role of hyperthermia in the management of human cancer will be difficult to assess until heating techniques and thermometry systems capable of delivering and monitoring safe, predictable and reproducible treatments are developed. These requirements present major challenges to biomedical engineers and physicists and are currently far from being solved. However, significant improvements to the technology associated with clinical hyperthermia have been achieved during the 1980s and the purpose of this chapter is to present an overview of some of the techniques which are currently available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arcangeli G, Lombardini PP, Lovisolo GA, Marsiglia G, Piatelli M (1984) Focussing of 915 MHz electromagnetic power on deep human tumours: a mathematical model study. IEEE Trans Biomed Eng BME-31: 47–52

    Google Scholar 

  • Aristazabal SA, Oleson JR (1984) Combined interstitial radiation and localized current field hyperthermia: results and conclusions from clinical studies. Cancer Res (Suppl) 44: 4757s-4760s

    Google Scholar 

  • Armitage DW, LeVeen HH, Pethig R (1983) Radiofrequency induced hyperthermia: computer simulation of specific absorption rate distributions using realistic anatomical models. Phys Med Biol 28: 31–42

    PubMed  CAS  Google Scholar 

  • Astrahan MA, Norman A (1982) A localized current field hyperthermia system for use with 192-iridium interstitial implants. Med Phys 9: 419–424

    PubMed  CAS  Google Scholar 

  • Atkinson WJ, Brezovich IA, Chakraborty DP (1984) Usable frequencies in hyperthermia with thermal seeds. IEEE Trans Biomed Eng, BME-31: 70–75

    Google Scholar 

  • Bach Andersen J (1985a) Theoretical limitations on radiation into muscle tissue. Int J Hyperthermia 1:45–55

    Google Scholar 

  • Bach Anderson J (1985b) Electromagnetic heating. In: Overgaard J (ed) Hyperthermic oncology 1984, vol 2. Taylor and Francis, London, pp113–128

    Google Scholar 

  • Bach Andersen J, Baun A, Harmark K, Heinzl L, Raskmark P, Overgaard J (1984) A hyperthermia system using a new inductive applicator. IEEE Trans Biomed Eng, BME-31: 21–27

    Google Scholar 

  • Bahl IJ, Stuchly SS (1980) Analysis of a microstrip covered with a lossy dielectric. IEEE Trans Microwave Theory Tech, MTT-28: 104–109

    Google Scholar 

  • Bahl IJ, Stuchly SS, Stuchly MA (1980) A new microstrip radiator for medical applications. IEEE Trans Microwave Theory Tech, MIT-28: 1464–1468

    Google Scholar 

  • Bentzen SM, Overgaard J (1984) Non invasive thermometry by subtraction X-ray computed tomography. In: Overgaard J (ed) Hyperthermic oncology 1984, vol1. Taylor and Francis, London, pp 557–560

    Google Scholar 

  • Bicher HI, Moore DW, Wolfstein RW (1984a) A method of interstitial thermoradiotherapy. In: Overgaard J (ed) Hyperthermic oncology 1984, vol 1. Taylor and Francis, London, pp 595–598

    Google Scholar 

  • Bicher HI, Wolfstein RS, Fingerhut AG, Frey HS, Lewinsky BS (1984b) An effective fractionation regime for interstitial thermoradiotherapy - preliminary clinical results. In: Overgaard J (ed) Hyperthermic oncology 1984, vol 1. Taylor and Francis, London, pp 575–578

    Google Scholar 

  • Bini M, Ignesti A, Millanta L, Rubino N, Vanni R, Lauri G, Lenzi A, Pace M, Pirillo P (1983) Apparatus for RF and microwave hyperthermia. Alta Frequenza, LII:176–178

    Google Scholar 

  • Bini M, Distante V, Ignesti A, Lauri G, Millanta L, Pace M, Pirillo M, Rubino N, Vanni R (1984) A new procedure prevents fat-tissue overheating in radiofrequency hyperthermia. In: Overgaard J (ed) Hyperthermic oncology 1984, vol 1. Taylor and Francis, London, pp 845–848

    Google Scholar 

  • Brezovich IA, Lilly MB, Durant JR, Richards DB (1981) A practical system for clinical radiofrequency hyperthermia. Int J Radiat Oncol Biol Phys, 7: 423–430

    PubMed  CAS  Google Scholar 

  • Brezovich IA, Young JH, Atkinson JW, Wang MT (1982) Hyperthermia consideration for a conducting cylinder heated by an oscillating electric field parallel to the cylinder axis. Med Phys 9: 746–748

    PubMed  CAS  Google Scholar 

  • Brezovich IA, Atkinson WA, Chakraborty DP (1984a) Temperature distributions in tumor models heated by self-regulating nickel-copper alloy thermoseeds. Medical Physics 11:145–152

    CAS  Google Scholar 

  • Brezovich IA, Atkinson WJ, Lilly MB (1984b) Local hyperthermia with interstitial techniques. Cancer Research (Suppl) 44: 4572s-4756s

    Google Scholar 

  • Britt RH, Lyons BE, Pounds DW, Prionas DS (1983) Feasibility of ultrasound hyperthermia in the treatment of malignant brain tumours. Med Instrum 17: 172–177

    PubMed  CAS  Google Scholar 

  • Bull JM (1983) Systemic hyperthermia: background and principles. In: Storm FK (ed) Hyperthermia in cancer therapy. Hall, Boston, pp 401–405

    Google Scholar 

  • Burdette EC, Benson T, Magin RL, Loane J, Lee SW (1985) Patch antenna phased array microwave hyperthermia applicator. In: Abstracts for 33rd annual meeting radiation research society, Los Angeles, May 1985. Abstract Ad-16, p 12

    Google Scholar 

  • Burton C, Hill M, Walker AE (1971) The RF thermoseed - a thermally self regulating implant for the production of brain lesions. IEEE Trans Biomed Eng BME-18: 104–109

    Google Scholar 

  • Can KL, El-Mandi AM, Shaeffer J (1982) Passive microwave thermography coupled with microwave heating to enhance early detection of cancer. Microwave J 25 (5): 125–136

    Google Scholar 

  • Cetas TC (1982) Invasive thermometry. In: Nussbaum GH (ed) Physical aspects of hyperthermia. American Institute of Physics, New York, pp 231–265

    Google Scholar 

  • Cetas TC (1984) Will thermometric tomography become practical for hyperthermia treatment monitoring? Cancer Res (Suppl) 44: 4805s-4808s

    PubMed  CAS  Google Scholar 

  • Cetas TC (1985) Thermometry and thermal dosimetry. In: Overgaard J (ed) Hyperthermic oncology 1984, vol 2. Taylor and Francis, London, pp 91–112

    Google Scholar 

  • Chakraborty DP, Brezovich IA (1982) Error sources affecting thermocouple thermometry in RF electromagnetic fields. J Microwave Power 17: 17–28

    CAS  Google Scholar 

  • Chen MM, Holmes KR (1980) Microvascular contributions in tissue heat transfer. Ann NY Acad Sci 335: 137–150

    PubMed  CAS  Google Scholar 

  • Christensen DA (1983) Thermometry and thermography. In: Storm FK (ed) Hyperthermia in cancer therapy. Hall, Boston, pp 223–232

    Google Scholar 

  • Corry PM, Barlogie B, Frazier OH, Choksi J, Headley D (1982a) Treatment of bulky human neoplasms with a magnetic induction system. Rad Res 91: 422

    Google Scholar 

  • Corry PM, Barlogie B, Tilchen EJ, Armour EP (1982b) Ultrasound-induced hyperthermia for the treatment of human superficial tumours. Int J Radiat Oncol Biol Phys 8: 1225–1229

    CAS  Google Scholar 

  • Cosset J-M, Dutreix J, Dufour J, Janoray P, Damia E, Haie C, Clarke D (1984) Combined interstitial hyperthermia and brachytherapy: Institute Gustave Roussy technique and preliminary results. Int J Rad Oncol Biol Phys 10: 307–312

    CAS  Google Scholar 

  • Coughlin CT, Douple EB, Strohbehn JW, Eaton WL, Trembly BS, Wong TZ (1983) Interstitial hyperthermia in combination with brachytherapy. Radiology 148: 285–288

    PubMed  CAS  Google Scholar 

  • Dickinson RI (1984a) A non-rigid mosaic applicator for local hyperthermia. In: Overgaard J (ed) Hyperthermic oncology 1984, vol 1. Taylor and Francis, London, pp 671–674

    Google Scholar 

  • Dickinson RJ (1984b) An ultrasound system for local hyperthermia using scanned focused transducers. IEEE Trans Biomed Eng 1118: 120–125

    Google Scholar 

  • Dickinson RJ (1985) Thermal conduction errors of manganin-constantan thermocouple arrays. Phys Med Biol 30: 445–453

    CAS  Google Scholar 

  • di Sieyes DC, Douple EB, Strohbehn JW, Trembly BS (1981) Some aspects of optimisation of an invasive microwave antenna for local hyperthermia treatment of cancer. Med Phys 8: 174–183

    PubMed  Google Scholar 

  • Doss JD (1982) Calculation of electric fields in conductive media. Med Phys 9: 566–573

    PubMed  CAS  Google Scholar 

  • Doss JD, McCabe CW (1976) A technique for localized heating in tissue: an adjunct to tumor therapy. Med Instrum 10: 16–21

    PubMed  CAS  Google Scholar 

  • Dunn F, O’Brien WD (1978) Ultrasonic absorption and dispersion. In: Fry FJ (ed) Ultrasound: its applications to medicine and biology, vol 1. Elsevier, Amsterdam, pp 393–439

    Google Scholar 

  • Emani B, Perez C, Nussbaum G, Leybovich L (1984) Regional hyperthermia in treatment of recurrent deep-seated tumors: preliminary report. In: Overgaard J (ed) Hyperthermic oncology 1984, vol I. Taylor and Francis, London, pp 605–608

    Google Scholar 

  • Engelhardt R (1985) Whole body hyperthermia. Methods and results. In: Overgaard J (ed) Hyper-thermic oncology 1984, vol 1. Taylor and Francis, London, pp 263–276

    Google Scholar 

  • Fallone BG, Moran PR, Podgorsak EB (1982) Non-invasive thermometry with a clinical X-ray CT scanner. Med Phys 9: 715–721

    PubMed  CAS  Google Scholar 

  • Fessenden P, Anderson TL, Marmor JB, Pounds D, Sagerman R, Strohbehn JW (1982) Experience with a deep heating ultrasound system. Rad Res 91: 415

    Google Scholar 

  • Fessenden P (1984) Ultrasound methods for inducing hyperthermia. Front Radiat Ther Onc 18: 62–69

    CAS  Google Scholar 

  • Fessenden P, Lee ER, Samulski TV (1984) Direct temperature measurement. Cancer Res 44: 4799s-4804s

    PubMed  CAS  Google Scholar 

  • Frazier OH, Corry PM (1984) Induction of hyperthermia using implanted electrodes. Cancer Res (Suppl) 44: 4864s-4866s

    PubMed  CAS  Google Scholar 

  • Gee W, Lee SS, Bong NK, Cain CA, Mittra R, Magin RL (1984) Focussed array hyperthermia applicator. Theory and experiment. IEEE Trans Biomed Eng BME-31: 38–46

    Google Scholar 

  • Gerner EW (1985) Definition of thermal dose. Biological isoeffect relationships and dose for temperature-induced cytotoxity. In: Overgaard J (ed) Hyperthermic oncology, vol 2. Taylor and Francis, London, pp 245–251

    Google Scholar 

  • Gibbs FA (1983) Thermal mapping’ in experimental cancer treatment with hyperthermia: description and use of a semiautomatic system. Int J Radiat Oncol Biol Phys 9: 1057–1063

    PubMed  Google Scholar 

  • Gibbs FA (1984) Regional hyperthermia: a clinical appraisal of non-invasive deep-heating methods. Cancer Res (Suppl) 44: 4765s-4770s

    PubMed  Google Scholar 

  • Guy AW (1971) Electromagnetic fields and relative heating patterns due to a rectangular aperture source in direct contact with bilayered biological tissue. IEEE Trans Microwave Theory Techn, MIT-19: 214–223

    Google Scholar 

  • Guy AW, Lehmann JF, Stonebridge JB (1974) Therapeutic applications of electromagnetic power. Proc IEEE 62: 55–75

    Google Scholar 

  • Hagmann MJ (1984) Propagation on a sheath helix in a coaxially layered lossy dielectric medium. IEEE Trans Microwave Theory Tech MIT-32: 122–126

    Google Scholar 

  • Hagmann MJ, Levin RL (1984) Analysis of the helix as an RF applicator for hyperthermia. Electron Lett 20: 337–338

    Google Scholar 

  • Halac S, Roemer RB, Oleson JR, Cetas TC (1983) Magnetic induction heating of tissue: numerical evaluation of tumor temperature distributions. Int J Radiat Oncol Biol Phys 9: 881–891

    PubMed  CAS  Google Scholar 

  • Hand JW (1984) Microwaves and ultrasound in clinical hyperthermia: some physical aspects of heating and thermometry. In: Bajzer Z, Baxa P, Franconi C (eds) Applications of physics to medicine and biology. World Scientific Publishing, Singapore, pp 309–336

    Google Scholar 

  • Hand JW (1985) Thermometry in hyperthermia. In: Overgaard J (ed) Hyperthermic oncology 1984, vol 2. Taylor and Francis, London, pp 299–308

    Google Scholar 

  • Hand JW, Dickinson RH (1984) Linear thermocouple arrays for in vivo observation of ultrasonic hyperthermia fields. Br J Radiol 57: 656

    PubMed  CAS  Google Scholar 

  • Hand JW, Hind AJ (1986) A review of microwave and RF applicators. In: Hand JW, James JR (eds) Physical techniques in clinical hyperthermia. Research Studies Press, Letchworth, pp 98–148

    Google Scholar 

  • Hand JW, Johnson RH (1986) Field penetration from electromagnetic applicators for localised hyperthermia. In: Bruggmoser G, Hinkelbein W, Engelhardt R, Wannemacher M (eds) Locoregional high-frequency hyperthermia and temperature measurement. Springer, Berlin Heidelberg New York Tokyo, pp7–17 (Recent results in cancer research, vol 101)

    Google Scholar 

  • Hand JW, Ledda JL, Evans NTS (1982) Considerations of radiofrequency induction heating for localised hyperthermia. Phys Med Biol 27: 1–16

    PubMed  CAS  Google Scholar 

  • Hand JW, Hind AJ, Cheetham JL (1985) Multi-element microwave applicators for localised hyperthermia. Strahlentherapie 161: 535

    Google Scholar 

  • Harmark K (1983) Design of multipoint thermometer. Strahlentherapie 159: 373

    Google Scholar 

  • Haslam NC, Gillespie AR, Haslam CGT (1984) Aperture synthesis thermograph - a new approach to passive microwave temperature measurements in the body. IEEE Trans Microwave Theory Tech MIT-32: 829–835

    Google Scholar 

  • Hill SC, Christensen DA, Durney CH (1983) Power deposition patterns in magnetically-induced hyperthermia : a two dimensional low frequency numerical analysis. Int J Rad Oncol Biol Phys 9: 893–904

    CAS  Google Scholar 

  • Hiraoka M, Jo S, Takahashi M, Nishida H, Abe M (1984) Clinical application of RF capacitive heating for deep seated tumors. In: Matsuda T, Kikuchi M (eds) Hyperthermic oncology. Jap Soc Hyperthermic Oncol, Tokyo, pp 190–191

    Google Scholar 

  • Hiraoka M, Jo S, Akita T, Takahashi M, Abe M (1985) Effectiveness of RF capacitive hyperthermia in the heating of human deep-seated tumors. In: Abe M, Takahashi M, Singahara T (eds) Hyperthermia in cancer therapy. Mag Bros, Tokyo, pp 98–99

    Google Scholar 

  • Hynynen K, Watmough DJ, Mallard JR, Fuller M (1983) Local hyperthermia induced by focused and overlapping ultrasonic fields - an in vivo demonstration. Ultrasound Med Biol 9: 621–627

    PubMed  CAS  Google Scholar 

  • Iskander MF, Khoshdel-Milani O (1984) Numerical calculations of the temperature distribution in realistic cross-sections of the human body. Int J Radiat Oncol Biol Phys 10: 1907–1912

    PubMed  CAS  Google Scholar 

  • Iskander MF, Turner PF, Dubow JB, Kao J (1982) Two dimensional technique to calculate the EM power deposition pattern in the human body. J Microwave Power 17:175–185

    CAS  Google Scholar 

  • Johnson RH, James JR, Hand JW, Hopewell JW, Dunlop PRC, Dickinson RJ (1984) New low profile applicators for local heating of tissue. IEEE Trans Biomed Eng, 1118: 28–37

    Google Scholar 

  • Johnson RH, James JR, Hand JW, Dickinson RI (1985) Compact 27 MHz applicators. Strahlentherapie 161: 537–538

    Google Scholar 

  • Joseph CP, Astrahan M, Lipsett J, Archambeau J, Forell B, George FW (1981) Interstitial hyperthermia and interstitial iridium 192 implantation: a technique and preliminary results. Int J Radiation Oncology Biol Phys 7: 827–833

    CAS  Google Scholar 

  • Kantor G, Witters DM (1983) The performance of a new 915 MHz direct contact applicator with reduced leakage. J Microwave Power 18: 133–142

    CAS  Google Scholar 

  • Kato H, Ishida T (1983) A new inductive applicator for hyperthermia. J Microwave Power 18: 331–336

    CAS  Google Scholar 

  • Kato H, Ishida T, Kano E, Oikawa S (1985) Non invasive thermometry with NMR-CT: temperature dependency of T, of the implanted tumor. In: Abe M, Takahashi M, Sugahara T (eds) Hyperthermia in cancer therapy. Mag Bros, Tokyo, pp 104–105

    Google Scholar 

  • King RWP, Trembly BS, Strohbehm JW (1983) The electromagnetic field of an insulated antenna in a conducting or dielectric medium. IEEE Trans Microwave Theory Techn, MTT-31: 574–583

    Google Scholar 

  • Lagendijk JJW (1983) A new coaxial TEM radiofrequency/microwave applicator for non-invasive deep-body hyperthermia. J Microwave Power 18: 367–376

    CAS  Google Scholar 

  • Lagendijk JJW, de Leeuw AAC (1986) The development of applicators for deep body hyperthermia. In: Bruggmoser G, Hinkelbein W, Engelhardt R, Wannemacher M (eds) Locoregional high-frequency hyperthermia and temperature measurement. Springer, Berlin Heidelberg New York (Recent results in cancer research, vol 101), pp 18–35

    Google Scholar 

  • Lagendijk JJW, Schellekens M, Schipper J, van der Linden PM (1984) A three-dimensional description of heating patterns in vascularised tissues during hyperthermia treatment. Phys Med Biol 29: 495–507

    PubMed  CAS  Google Scholar 

  • Lele PP (1983) Physical aspects and clinical studies with ultrasonic hyperthermia. In: Storm FK (ed) Hyperthermia in cancer therapy. Hall, Boston, pp 333–367

    Google Scholar 

  • Lerch IA, Kohn S (1983) Radiofrequency hyperthermia: the design of coil transducers for local heating. Int J Radiat Oncol Biol Phys 9: 939–948

    PubMed  CAS  Google Scholar 

  • LeVeen HH, Ahmed N, Piccone VA, Shugaar S, Falk G (1980) Radiofrequency therapy: clinical experience. Ann NY Acad Sci 335: 362–371

    PubMed  CAS  Google Scholar 

  • Lin JC, Kantor G, Ghods A (1982) A class of new microwave therapeutic applicators. Rad Sci 17: 119s-123s

    Google Scholar 

  • Ludeke KM, Kohler J (1983) Microwave radiometric system for biomedical tissue temperature and emissivity measurements. J Microwave Power 18: 277–283

    CAS  Google Scholar 

  • Lyons BE, Britt R, Strohbehn JW (1984) Localized hyperthermia in the treatment of malignant brain tumors using an interstitial microwave antenna array. IEEE Trans Biomed Eng BME-31: 53–62

    Google Scholar 

  • Lyons BE, Samulski TD, Britt RH (1985) Temperature measurements in high thermal gradients: 1. The effects of conduction. Int J Radiat Oncol Biol Phys 11: 951–962

    PubMed  CAS  Google Scholar 

  • Mamouni A, Bliot F, Leroy Y, Moschetto Y (1977) Radiometer for temperature and microwave properties measurements of biological substances. In: Proceedings 7th European Microwave Conference. Microwave Exhibitions and Publishers, Sevenoaks, Kent, pp 703–717

    Google Scholar 

  • Mamouni A, Leroy Y, Van de Velde JC, Bellarbi L (1983) Introduction to correlation microwave thermography. J Microwave Power 18: 285–293

    CAS  Google Scholar 

  • Manning MR, Cetas TC, Miller RC, Oleson JR, Connor WG, Gerner EW (1982) Clinical hyperthermia: results of a phase I trial employing hyperthermia alone or in combination with external beam or interstitial radiotherapy. Cancer 49: 205–216

    PubMed  CAS  Google Scholar 

  • Marchal C, Bey P, Metz R, Gaulard ML, Robert J (1982) Treatment of superficial human cancerous nodules by local ultrasound hyperthermia. Br J Cancer 45 (Suppl V) 243–245

    Google Scholar 

  • Marchai C, Bey P, Jacomino J, Hoffstetter S, Gaulard ML, Robert J (1985) Preliminary technical, experimental and clinical results on the use of HPRL27 system for the treatment of deep seated tumors by hyperthermia. Int J Hyperthermia 1 (2): 105–116

    Google Scholar 

  • Marmor JB, Pounds D, Hahn GM (1982) Clinical studies with ultrasound-induced hyperthermia. Nat Cancer Inst Mon 61: 333–337

    CAS  Google Scholar 

  • Matloubieh AY, Roemer RB, Cetas TC (1984) Numerical simulation of magnetic induction heating of tumors with ferromagnetic seed implants. IEEE Trans Biomed Eng, BME-31: 227–234

    Google Scholar 

  • Matsuda T, Sugiyama A, Nakata Y (1984) Fundamental and clinical studies of radiofrequency hyperthermia and radiation therapy. In: Overgaard J (ed) Hyperthermic oncology 1984, vol 1. Taylor and Francis, London, pp349–352

    Google Scholar 

  • Mayer JL (1984) Ultrasound hyperthermia - the Stanford experience. Front Radiat Ther Oncol 18: 126–135

    Google Scholar 

  • Medal R, Shorey W, Gilchrist RK, Barker W, Hanselman R (1959) Controlled radiofrequency generator for production of localized heat in intact animal. Am Med Assoc Arch Surgery 79: 427–431

    Google Scholar 

  • Mendecki J, Friedenthal E, Botstein C, Sterzer F, Paglione R (1979) Therapeutic potential of conformal applicators for induction of hyperthermia. J Microwave Power 14: 139–144

    CAS  Google Scholar 

  • Milligan AJ (1984) Whole-body hyperthermia induction techniques. Cancer Res (Suppl) 44: 4869s-4872s

    PubMed  CAS  Google Scholar 

  • Miyakawa M (1981) Study of microwave thermography application to the estimation of subcutaneous temperature profiles. Trans IECE Japan, E64: 786–792

    Google Scholar 

  • Moidel RA, Wolfson SK, Selker RG, Weine SB (1976) Materials for selective heating in a radiofrequency electromagnetic field for the combined chemothermal treatment of brain tumours. J Biomed Mater Res 10: 327–334

    PubMed  CAS  Google Scholar 

  • Morita N, Bach Andersen J (1982) Near-field absorption in a circular cylinder from electric and magnetic line sources. Biolectromagnetics 3: 253–274

    CAS  Google Scholar 

  • Nasoni RL, Bowen T, Dewhirst MW, Roth H (1982) In vivo temperature dependence of the speed of sound in mammalian tissue and its possible use in hyperthermia. Nat Cancer Inst Monogr 61: 501–504

    Google Scholar 

  • Oleson JR (1982a) Hyperthermia by magnetic induction: I. Physical characteristics of the technique. Int J Radiat Oncol Biol Phys 8: 1747–1756

    CAS  Google Scholar 

  • Oleson JR (1982b) A clinical comparison of heating patterns produced by magnetic induction vs paired coaxial electrodes. Strahlentherapie 158: 388

    Google Scholar 

  • Oleson JR, Cetas TC, Corry PM (1983a) Hyperthermia by magnetic induction: experimental and theoretical results for coaxial coil pairs. Rad Res 95:175–186

    CAS  Google Scholar 

  • Oleson JR, Heusinkveld RS, Manning MR (1983b) Hyperthermia by magnetic induction: clinical experience with concentric electrodes. Int J Radiat Oncol Biol Phys 9: 549–556

    CAS  Google Scholar 

  • Paglione R, Sterzer F, Mendecki J, Friedenthal E, Botstein C (1981) 27 MHz ridged waveguide applicators for localised hyperthermia treatment of deep-seated malignatnt tumours. Microwave Journal 24: 71–80

    Google Scholar 

  • Parker DL, Smith V, Shelden P, Crooks LE, Fussell L (1983) Temperature distribution measurements in two-dimensional NMR imaging. Med Phys 10: 321–325

    PubMed  CAS  Google Scholar 

  • Paulsen KD, Strohbehn JW, Lynch DR (1984a) Theoretical temperature distributions produced by an annular phased array type system in CT-based patient models. Rad Res 100: 536–552

    CAS  Google Scholar 

  • Paulsen KD, Strohbehn JW, Hill SC, Lynch DR, Kennedy FE (1984b) Theoretical temperature profiles for concentric coil induction heating devices in a two dimensional axi-asymmetric, inhomogeneous patient model. Int J Rad Oncol Biol Phys 10: 1095–1107

    CAS  Google Scholar 

  • Penttinen A, Luukkala M (1976) Sound pressure near the focal area of an ultrasonic lens. J Phys D App Phys 9: 1927–1936

    Google Scholar 

  • Plancot M, Chive M, Gioaux G, Prevost B (1984) Thermal dosimetry in microwave hyperthermia process based on radiometric temperature measurements: principles and feasibility. In: Overgaard J (ed) Hyperthermic oncology 1984, vol 1. Taylor and Francis, London, pp 863–866

    Google Scholar 

  • Raskmark P, Bach Andersen J (1984) Focussed electromagnetic heating of muscle tissue. IEEE Trans Microwave Theory Tech MTT-32: 887–888

    Google Scholar 

  • Robert J, Marchai C, Drocourt M, Escayne JM, Thouvenot P, Gaulard ML, Tosser A (1982) Ultrasound velocimetry for hyperthermia control. In: Gautherie M, Albert E (eds) Biomedical thermology. Liss, New York, pp 555–560

    Google Scholar 

  • Roemer RB, Cetas TC (1984) Applications of bioheat transfer simulations in hyperthermia. Cancer Res (Suppl) 44: 4788s-4798s

    PubMed  CAS  Google Scholar 

  • Ruggera PS, Kantor G (1984) Development of a family of RF helical coil applicators which produce transversely uniform axially distributed heating in cylindrical fat-muscle phantoms. IEEE Trans Biomed Eng, BME-31: 98–106

    Google Scholar 

  • Salcman M, Samaras GM (1983) Interstitial microwave hyperthermia for brain tumors: results of a phase I clinical trial. J Neuro Oncol 1: 225–236

    CAS  Google Scholar 

  • Samaras GM (1984) Intracranial microwave hyperthermia: heat induction and temperature control. IEEE Trans Biomed Eng BME-31: 63–69

    Google Scholar 

  • Samulski TY, Lyons BE, Britt RH (1985) Temperature measurements in high thermal gradients: II analysis of conduction effects. Int J Radiat Oncol Biol Phys 11: 963–971

    PubMed  CAS  Google Scholar 

  • Sandhu TS, Kolozvary AJ (1983) Effect of bolus/tissue inhomogeneities on the resonance frequency of MW microstrip applicators. Radiation Research 94: 594

    Google Scholar 

  • Sandhu TS, Kolozvary Ai (1984) Conformal hyperthermia applicators. In: Overgaard J (ed) Hyper-thermic oncology 1984, vol 1. Taylor and Francis, London, pp 675–678

    Google Scholar 

  • Sapozink MD, Gibbs FA, Gates KS, Stewart JR (1984) Regional hyperthermia in the treatment of clinically advanced deep seated malignancy: results of a pilot study employing an annular array applicator. Int J Radiat Oncol Biol Phys 10: 775–786

    PubMed  CAS  Google Scholar 

  • Sapozink MD, Gibbs FA, Sandhu TS (1985a) Practical thermal dosimetry. Int J Radiat Oncol Biol Phys 11: 555–560

    CAS  Google Scholar 

  • Sapozink MD, Gibbs FA, Thomson JW, Eltringham JR, Stewart JR (1985b) A comparison of deep regional hyperthermia from an annular array and a concentric coil in the same patients. Int J Radiat Oncol Biol Phys 11: 179–180

    CAS  Google Scholar 

  • Schaller G (1984) Inversion of radiometric data from biological tissue by an optimisation method. Electron Lett 20: 380–382

    Google Scholar 

  • Scott BO (1957) The principles and practice of diathermy. Heinemann, London, pp 100–101

    Google Scholar 

  • Semet C, Mamouni A, van de Velde JC, Hochedez-Robillard M, Leroy Y (1984) Système de thermographie microonde multisonde à balayage electronique. Innov Technol Biol 5: 200–209

    Google Scholar 

  • Song CW, Rhee JG, Lee CKK, Levitt SH (1986) Capacitive heating of phantom and human tumors ith an 8 MHz radiofrequency applicator (Thermotion RF-8). Int J Radiat Oncol Biol Phys 12:365–372

    PubMed  CAS  Google Scholar 

  • Stauffer PR, Cetas TC, Fletcher AM, DeYoung DW, Dewhirst MW, Oleson JR, Roemer RB (1984a) Observations on the use of ferromagnetic implants for inducing hyperthermia. IEEE Trans Biomed Eng, BME-31: 76–90

    Google Scholar 

  • Stauffer PR, Cetas TC, Jones RC (1984b) Magnetic induction heating of ferromagnetic implants for inducing localized hyperthermia in deep seated tumours. IEEE Trans Biomed Eng, BME-31: 235–251

    Google Scholar 

  • Sternhagen CJ, Doss JD, Day PE, Edwards WS, Doberneck RC, Herzon FS, Powell TD, O’Brien GF, Larkin JM (1978) Clinical use of radio-frequency current in oral cavity carcinomas and metastatic malignancies with continuous temperature control and monitoring. In: Streffer C (ed) Cancer therapy by hyperthermia and radiation. Urban and Schwarzenberg, Munich, pp 331–334

    Google Scholar 

  • Storm FK, Harrison WH, Elliott RS, Kaiser LR, Silberman AW, Morton DL (1981) Clinical radiofrequency hyperthermia by magnetic-loop induction. J Microwave Power 16 (2): 179–184

    CAS  Google Scholar 

  • Storm FK, Harrison WH, Elliott RS, Silberman AW, Morton DL (1982) Thermal distribution of magnetic loop induction hyperthermia in phantoms and animals: effect of the living state and velocity of heating. Int J Radiat Oncol Biol Phys 8: 865–871

    PubMed  CAS  Google Scholar 

  • Strohbehn JW (1983) Temperature distributions from interstitial RF electrode hyperthermia systems: theoretical predictions. Int J Radiation Oncology Biol Phys 9:1655–1667

    CAS  Google Scholar 

  • Strohbehn JW, Bowers ED, Walsh JE, Douple EB (1979) An invasive microwave antenna for locally-induced hyperthermia for cancer therapy. J Microwave Power 14: 339–350

    CAS  Google Scholar 

  • Strohbehn JW, Trembly BS, Douple EB (1982) Blood flow effects on the temperature distributions from an invasive microwave antenna array used in cancer therapy. IEEE Trans Biomed Eng BME-29: 649–661

    Google Scholar 

  • Strohbehn JW, Paulsen KD, Lynch DR (1986) Use of the finite element method in computerised thermal dosimetry. In: Hand JW, James JR (eds) Physical techniques in clinical hyperthermia. Research Studies Press, Letchworth, pp383–451

    Google Scholar 

  • Stuchly SS, Stuchly MA (1978) Multimode square waveguide applicators for medical applications of microwave power. In: Proceedings 8th European Microwave Conference, Microwave Exhibitions Publishers, Sevenoaks, Kent, pp 553–557

    Google Scholar 

  • Swicord ML, Davis CC (1981) Energy absorption from small radiating coaxial probes in lossy media. IEEE Trans Microwave Theory Tech MTT-29: 1202–1209

    Google Scholar 

  • Takahashi Y, Nikawa Y, Mori S, Nakagawa M, Kikuchi M (1985) Electromagnetic field convergent applicator for microwave hyperthermia at 433 MHz. In: Abe M, Takahashi M, Sugahara T (eds) Hyperthermia in cancer therapy. Mag Bros, Tokyo, pp 132–133

    Google Scholar 

  • Tanabe E, McEwen A, Norris CS, Fessenden P, Samulski TU (1983) A multi-element microstrip antenna for local hyperthermia. In IEEE MTT-S international microwave symposium digest (IEEE 83 CH 1871–3). IEEE, New York, pp 183–185

    Google Scholar 

  • Taylor LS (1978) Electromagnetic syringe. IEEE Trans Biomed Eng BME-25: 303–305

    Google Scholar 

  • Taylor LS (1980) Implantable radiators for cancer therapy by microwave hyperthermia. Proc IEEE 68:142–149

    Google Scholar 

  • Taylor LS (1984) Penetrating electromagnetic wave applicators. IEEE Trans Antennas and Propogation, AP-32: 1138–1142

    Google Scholar 

  • Trembly BS, Strohbehn JW, King RWP (1982) Practical embedded insulated antenna for hyperthermia. In: Hansen EW (ed) Proceedings 10th annual northeast bioengineering conference, 15–16 Mar 1982. Dartmouth College, Hanover. IEEE, New York, pp 105–108

    Google Scholar 

  • Trembly BS, Richter HJ, Mechling JA (1984) The effect of antenna surface cooling on the temperature distribution of an interstitial microwave antenna array. Presented at 4th international symposium on hyperthermic oncology, 2–6 July 1984, Aarhus, Denmark

    Google Scholar 

  • Turner PF (1983) Electromagnetic hyperthermia devices and methods. MSc thesis, Department Electrical Engineering, University of Utah, June 1983

    Google Scholar 

  • Turner PF (1984) Regional hyperthermia with an annular phased array. IEEE Trans Biomed Eng BME-31: 106–114

    Google Scholar 

  • Turner PF, Kumar L (1982) Computer solution for applicator heating patterns. Nat Cancer Inst Monogr 61: 521–532

    Google Scholar 

  • Vaguine VA, Tanabe E, Giebeler RH, McEwen AH, Halin GM (1982) Microwave direct-contact applicator system for hyperthermia therapy research. Nat Cancer Inst Monogr 61: 461–464

    Google Scholar 

  • Vaguine VA, Christensen DA, Lindley JH, Watson TE (1984) Multiple sensor optical thermometry system for application in clinical hyperthermia. IEEE Trans Biomed Eng BME-31: 168–172

    Google Scholar 

  • van denBerg PM, de Hoop AT, Segal A, Praagman N (1983) The computational model of the electromagnetic heating of biological tissue with application to hyperthermic cancer therapy. IEEE Trans Biomed Eng BME-30: 797–805

    Google Scholar 

  • van Rhoon GC, Visser AG, van den Berg PM, Reinhold HS (1984) Temperature depth profiles obtained in muscle-equivalent phantoms using the RCA 27 MHz ridged waveguide. In: Overgaard J (ed) Hyperthermic oncology, vol1. Taylor and Francis, London, pp 499–502

    Google Scholar 

  • von Ardenne M, von Ardenne Th, Böhme G, Reitnauer PG (1977) Selektive Lokalhyperthermie der Krebsgewebe. Homogenisierte Energiezufuhr auch in tief liegende Gewebe der HochleistungsDekawellen-Spulenfeld + Rasterbewegung des Doppelsystems. Arch Geschwulstforsch 47: 487–523

    Google Scholar 

  • Vora N, Forell B, Joseph C, Lipsett J, Archambeau JO (1982) Interstitial implant with interstitial hyperthermia. Cancer 50: 2518–2523

    PubMed  CAS  Google Scholar 

  • Waterman FM (1985) The response of thermometer probes inserted into catheters. Med Phys 12: 368–372

    PubMed  CAS  Google Scholar 

  • Weinbaum S, Jiji LM (1985) A new simplified bioheat equation for the effect of blood flow on local average tissue temperature. Trans ASME J Biomech Eng 107: 131–139

    CAS  Google Scholar 

  • Wells PNT (1977) Biomedical ultrasonics. Academic Press London

    Google Scholar 

  • Wickersheim KA, Sun MH, Heinemann SO (1985) 16-channel fiberoptic thermometry system with multisensor arrays for thermal mapping. In: Abstracts for 33rd annual meeting radiation research society, Los Angeles, May 1985. Abstract Fb-7, p 62

    Google Scholar 

  • Wiley JD, Webster JG (1982) Analysis and control of the current distributions under circular dispersive electrodes. IEEE Trans Biomed Eng BME-29: 381–385

    Google Scholar 

  • Wong TZ, Strohbehn JW, Smith KF, Trembly BS, Douple EB, Coughlin CT (1984) An interstitial microwave antenna array system (IMAAH) for local hyperthermia. Presented at 4th international symposium on hyperthermic oncology, 2–6July 1984, Aarhus, Denmark

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Hand, J.W. (1987). Heat Delivery and Thermometry in Clinical Hyperthermia. In: Streffer, C. (eds) Hyperthermia and the Therapy of Malignant Tumors. Recent Results in Cancer Research, vol 104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82955-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82955-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82957-4

  • Online ISBN: 978-3-642-82955-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics