Skip to main content

Critical Dynamics in Simple Ising-Like Systems

  • Conference paper
Magnetic Phase Transitions

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 48))

Abstract

There has been a surprising amount of theoretical and experimental interest recently in one of the simplest problems in the area of critical dynamics. The systems under scrutiny are two-dimensional Ising-like systems with a nonconserved order parameter. I have chosen to focus on this problem in these lectures for three reasons:

  1. (i)

    These systems appear superficially to be very simple. There is only one dynamical process that is important for long times and we understand the equilibrium properties in considerable detail.

  2. (ii)

    There exist natural examples of such systems (usually two-dimensional Ising antiferromagnets) and there are some interesting recent experiments on such systems which have been somewhat provocative.

  3. (iii)

    Essentially every known calculational method for critical dynamics has been applied to this problem. Thus we can use this system to review conveniently and compare these various methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Glauber, J. Math. Phys. (N.Y.) 2, 263 (1966).

    Google Scholar 

  2. K. Kawasaki, in Phase Transitions and Critical Phenomena, ed. by C. Domb and M.S. Green (Academic, N.Y., 1972), Vol. 2.

    Google Scholar 

  3. See for example the review by J. Gunton, M. San Miguel, and P. Sahni, to be published.

    Google Scholar 

  4. In adsorbed systems one must allow for the observed n x m orderings. This requires studying a model with more structure than the nearest-neighbor Ising model. See for example P.S. Sahni and J.D. Gunton, Phys. Rev. Lett. 47 1754 (1981) or E. Oguz, Preprint.

    Article  ADS  Google Scholar 

  5. B. Halperin, P. Hohenberg, and S. Ma, Phys. Rev. B10, 139 (1974).

    ADS  Google Scholar 

  6. See, for example, Monte Carlo Methods in Statistical Physics, ed. by K. Binder, Springer-Verlag, Berlin (1979).

    Google Scholar 

  7. See, for example, the discussion of G.F. Mazenko in Correlation Functions and Quasiparticie Interactions, ed. by J.W. Halley (Plenum, N.Y., 1978).

    Google Scholar 

  8. G.F. Mazenko and O.T. Valls, Phys. Rev. B24, 1419 (1981).

    ADS  Google Scholar 

  9. See, for example, P.C. Hohenberg and B.I. Hal perin, Rev. Mod. P-ys. 49, 435 (1977).

    Article  ADS  Google Scholar 

  10. S. De Dominicis, E. Brezin, and J. Zinn-Justin, Phys. Rev. B12, 4945 (1975).

    ADS  Google Scholar 

  11. R. Bausch, V. Dohm, H.K. Janssen, and R.K.P. Zia, Phys. Rev. Lett. 47, 1837 (1981).

    Article  ADS  Google Scholar 

  12. H. Yahata and M. Suzuki, J. Phys. Soc. Jpn. 27, 1421 (1969).

    Article  ADS  Google Scholar 

  13. H. Yahata, J. Phys. Soc. Jpn. 30, 657 (1971).

    Article  ADS  Google Scholar 

  14. Z. Racz and M.F. Collins, Phys. Rev. B13, 3074 (1976).

    ADS  Google Scholar 

  15. E. Stoll, K. Binder, and T. Schneider, Phys. Rev. B8, 3266 (1973).

    ADS  Google Scholar 

  16. M.C. Yalabik and J.D. Gunton, Prog. Theor. Phys. 62, 1573 (1979).

    Article  ADS  Google Scholar 

  17. M.P. Nightengale and H.W.J. Blöte, Physica 104A, 352 (1980).

    ADS  Google Scholar 

  18. R. Pandit, G. Forgacs, and P. Rujan, Phys. Rev. B24, 1576 (1981).

    ADS  MathSciNet  Google Scholar 

  19. J.C. d’Auriac, R. Maynard, and R. Rammal, J. Stat. Phys. 28, 307 (1982).

    Article  ADS  Google Scholar 

  20. H. Takano, Prog. Theo. Phys. 68, 493 (1982).

    Article  ADS  Google Scholar 

  21. Y. Achaim and M. Kosterlitz, Phy. Rev. Lett. 41, 128 (1978).

    Article  ADS  Google Scholar 

  22. G.F. Mazenko, M. Nolan, O.T. Valls, Phys. Rev. Lett. 41, 500 (1978).

    Article  ADS  Google Scholar 

  23. W. Kinzel, Z. Phys. B29, 361 (1978).

    ADS  Google Scholar 

  24. Y. Achaim, J. Phys. A11, L129 (1978).

    ADS  Google Scholar 

  25. M. Suzuki, K. Sogo, I. Matsuba, H. Ikada, T. Chikama, and H. Takano, Prog. Theor. Phys. 61, 864 (1979).

    Article  MATH  ADS  Google Scholar 

  26. S.T. Chui, G. Forgacs, and H.L. Frisch, Phys. Rev. B20, 243 (1979).

    ADS  MathSciNet  Google Scholar 

  27. M. Droz, Phys. Lett. 73A, 407 (1979).

    ADS  MathSciNet  Google Scholar 

  28. M. Suzuki, in Dynamical Critical Phenomena and Related Topics, ed. by C.P. Enz, Springer-Verlag, Berlin (1979).

    Google Scholar 

  29. G.F. Mazenko, in Dynamical Critical Phenomena and Related Topics, ed. by C.P. Enz, Springer-Verlag, Berlin (1979).

    Google Scholar 

  30. S. Ma, Phys. Rev. B19, 4824 (1979).

    ADS  Google Scholar 

  31. M. Droz and A. Malaspinas, J. Phys. C13. 4365 (1980).

    ADS  Google Scholar 

  32. M. Droz and A. Malaspinas, Helv. Phys. Acta. 53, 214 (1980).

    MathSciNet  Google Scholar 

  33. J.O. Indekeu and A.L. Stella, Phy. Lett. 78A, 160 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  34. G.F. Mazenko, M. Nolan and O.T. Valls, Phys. Rev. B22, 1275 (1980).

    ADS  MathSciNet  Google Scholar 

  35. U. Deker and F. Haake, Z. Phys. B36, 379 (1980).

    ADS  Google Scholar 

  36. A. Stella and R. Dekeyser, J. Stat. Phys. 25, 443 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  37. G.F. Mazenko and O.T. Valls, Phys. Rev. B24, 443 (1981).

    Google Scholar 

  38. G.F. Mazenko and O.T. Valls, in Real Space Renormalization, ed. by J.M.J. van Leeuwen and T.N. Burkhardt, (Springer-Verlag, Berlin, 1982).

    Google Scholar 

  39. H. Takano and M. Suzuki, Prog. Theor. Phys. 67, 1322 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  40. F. Haake and M. Lewenstein, Phys. Rev. B27, 5868 (1983).

    ADS  MathSciNet  Google Scholar 

  41. I will follow here rather closely the arguments of G.F. Mazenko and O.T. Valls, preprint.

    Google Scholar 

  42. T. Neimeijer and J.M.J. van Leeuwen, in Phase Transitions and Critical Phenomena, ed. by C. Domb and M.S. Green (Academic, N.Y., 1979) Vol. 6.

    Google Scholar 

  43. J. Tobochnik, S. Sarker, and R. Cordery, Phys. Rev. Lett. 46, 1417 (1981).

    Article  ADS  Google Scholar 

  44. S.L. Katz, J.D. Gunton, Phys. Rev. B25, 6008 (1982).

    ADS  Google Scholar 

  45. M.C. Yalabik and J.D. Gunton, Phys. Rev. B25, 534 (1982).

    ADS  Google Scholar 

  46. R.B. Stinchcombe, Phys. Rev. Lett. 50, 200 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  47. Possible discrepancies are discussed in: G.A. Baker, Jr., Phys. Rev. B15, 1552 (1977); B.G. Nickel and B. Sharpe J. Phys. A. Math. Gen. 12, 1819 (1979); and B. Nickel, Physica, 106A, 48 (1981).

    ADS  Google Scholar 

  48. F. Wegner in Phase Transitions and Critical Phenomena, ed. by C. Domb and M.S. Green, (Academic, N.Y. 1976), Vol. 6.

    Google Scholar 

  49. The high-temperature expansion of the operator Q for the “minimal coupling” operator, (2.25), begins with 1 + 4u4/3 + ….

    Google Scholar 

  50. One unsettling aspect of the treatment in this paper is the introduction of a flipping rate \(\widetilde\alpha \sim \alpha \;(1 - 3{{\rm{u}}^2})\) and the writing of the recursion relation in terms of \(\widetilde\alpha\) rather than α′. Using \({\rm{z}} = - \ell {\rm{n(}}\tilde \alpha '/\tilde \alpha )/\ell {\rm{nb}}\), they obtain z = 2.23, but if one uses \({\rm{z}} = - \ell {\rm{n(}}\alpha '/\tilde \alpha )/\ell {\rm{nb}}\), it looks as if one finds a significant change in z.

    Google Scholar 

  51. The parameter p of Ref. (40) is closely related to the parameter φ in Ref. (35). It was concluded there that the existence of this parameter invalidated the whole procedure, while in Ref. (40) it was decided that an intelligent choice of φ makes the method acceptable. In our own method (Refs. 37, 38) we have no such free parameter.

    Google Scholar 

  52. G.F. Mazenko and J. Luscombe, Ann. Phys. (N.Y.) 132, 121 (1981).

    Article  ADS  Google Scholar 

  53. G.F. Mazenko, J. Hirsch, M. Nolan, and O.T. Valls, Phys. Rev. Lett. 44, 1083 (1980).

    Article  ADS  Google Scholar 

  54. M. Fisher and R. Burford, Phys. Rev. 156, 583 (1967).

    Article  ADS  Google Scholar 

  55. S. Ma, Phys. Rev. Lett. 37, 461 (1976).

    Article  ADS  Google Scholar 

  56. J. Bartel and M.J. Nolan, Bull. Am. Phy. Soc. 28, 265 (1983).

    Google Scholar 

  57. M.T. Hutchings, H. Ikeda, and E. Janke, Phys. Rev. Lett. 49, 386 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mazenko, G.F. (1983). Critical Dynamics in Simple Ising-Like Systems. In: Ausloos, M., Elliott, R.J. (eds) Magnetic Phase Transitions. Springer Series in Solid-State Sciences, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82138-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82138-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82140-0

  • Online ISBN: 978-3-642-82138-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics