Skip to main content

Chemical Nature, Properties, Location, and Physiological and Pathological Variations of Modified Nucleosides in tRNAs

  • Chapter
Modified Nucleosides and Cancer

Abstract

One of the characteristics of tRNAs is that they contain a variety of atypical (also called modified or rare) nucleosides. Modified nucleosides also occur in other RNAs — mRNAs, rRNAs, small nuclear RNAs (snRNAs) — and even in DNAs, but never in such high proportions. For example, 15 of the total 75 nucleosides in beef liver tRNATrp are modified (Fournier et al. 1978). Furthermore, the modified nucleosides found in tRNA exhibit a wide range of structural variations: more than 50 have been isolated and characterized. Some are modified by a single methylation of the base or on the 2′ hydroxyl of the ribose moiety, but there are also a number of so-called hypermodified nucleosides with more complex modifications.

I am grateful to Dr. S. Nishimura, Dr. G. Keith, and Dr. R.P. Martin for critical reading of the manuscript. I thank Dr. K. Randerath and Dr. S. Nishimura and Dr. R. Gupta who made unpublished data available. Some of the results quoted in this paper were obtained during work supported by grants from the Institut National de la Santé et de la Recherche Médicale (Action Thématique 58 and Contrat de Recherche Libre 79.1.154.3)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal HP, Randerath K, Randerath E (1981a) Tumor mitochondrial tRNAs: The nucleotide sequence of Morris hepatoma 5123D mitochondrial tRNAGUcAsp. Nucleic Acids Res 9:2535–2541

    Article  PubMed  CAS  Google Scholar 

  • Agrawal HP, Gupta RC, Randerath K, Randerath E (1981b) The sequence of mitochondrial arginine tRNA (anticodon UCG from a transplantable rat tumor Morris hepatoma 5123D. FEBS Lett 130:287–290

    Article  PubMed  CAS  Google Scholar 

  • Agris PF (1975) Alterations of tRNA during erythroid differentiation of murine virus-induced leukemia cells. Arch Biochem Biophys 170: 114–123

    Article  PubMed  CAS  Google Scholar 

  • Agris PF (1980) The modified nucleosides of tRNA. A bibliography of biochemical and biophysical studies from 1970 to 1979. Alan R Liss, New York

    Google Scholar 

  • Agris PF, Söll D (1977) The modified nucleosides in tRNA. In: Vogel HJ (ed) Nucleic acid-protein recognition. Academic Press, New York, pp 321–344

    Google Scholar 

  • Alberty H, Raba M, Gross HJ (1978) Isolation from rat liver and sequence of a RNA fragment containing 32 nucleotides from position 5 to 36 from the 3’ end of ribosomal 18S RNA. Nucleic Acids Res 5:425–434

    Article  PubMed  CAS  Google Scholar 

  • Altweg M, Kubli E (1979) The nucleotide sequence of phenylalanine tRNA2 of Drosophila melanogaster: four isoacceptors with one basic sequence. Nucleic Acids Res 7: 93–105

    Article  Google Scholar 

  • Altweg M, Kubli E (1980) The nucleotide sequence of glutamate tRNA4 of Drosophila melanogaster. Nucleic Acids Res 8: 215–223

    Article  Google Scholar 

  • Arceneaux JL, Sueoka N (1969) Two species of Bacillus subtilis tyrosine tRNA. J Biol Chem 244:5959–5966

    PubMed  CAS  Google Scholar 

  • Arnold HH, Keith G (1977) The nucleotide sequence of phenylalanine tRNA from Bacillus subtilis. Nucleic Acids Res 4:2821–2829

    Article  PubMed  CAS  Google Scholar 

  • Arnold HH, Schmidt H, Raettig R, Sandig H, Domdey H, Kersten H (1976) 5-adenosyl-methionine and tetrahydrofolate-dependant methylation of tRNA in Bacillus subtilis. Incomplete methylations caused by trimethoprim, pactamycin or chloramphenicol. Arch Biochem Biophys 176: 12–20

    Article  PubMed  CAS  Google Scholar 

  • Arnold HH, Raettig R, Keith G (1977) Isoaccepting phenylalanine tRNAs from Bacillus subtilis as a function of growth conditions. FEBS Lett 73:210–214

    Article  PubMed  CAS  Google Scholar 

  • Baldacci G, Falcone C, Francisci S, Frontali L, Palleschi C (1979) Mitochondrial protein-synthesizing machinery in Saccharomycs cerevisiae grown in different metabolic conditions. Eur J Biochem 98:181–186

    Article  PubMed  CAS  Google Scholar 

  • Beck G, Hentzen D, Ebel JP (1970) Essais de mise en évidence d’une régulation hormonale au niveau des RNA de transfert. 1. Etude comparative des RNA de transfert de foie de poules immatures et de poules en ponte. Biochim Biophys Acta 213: 55–67

    PubMed  CAS  Google Scholar 

  • Bonnet J, Ebel JP, Dirheimer G, Shershneva LP, Krutilina AI, Venkstern TV, Bayev AA (1974) The corrected nucleotide sequence of valine tRNA from baker’s yeast. Biochimie 56:1211–1213

    Article  PubMed  CAS  Google Scholar 

  • Borek E, Srinivasan PR (1966) The methylation of nucleic acids. Ann Rev Biochem 35:275–298

    Article  CAS  Google Scholar 

  • Bun A, Menichi B, Heyman T (1981) Thio-methylation of tyrosine tRNA is associated with initiation of sporulation in Bacillus subtilis: Effect of phosphate concentration. J Bacteriol 146:819–822

    Google Scholar 

  • Burrows WJ, Armstrong DJ, Kammek M, Skoog F, Bock RM, Hecht SM, Dammann LG, Leonard NJ, Occolowitz J (1970) Isolation of four and identification of four cytokinins from wheat germ tRNA. Biochemistry 9: 1867–1872

    Article  PubMed  CAS  Google Scholar 

  • Busby WF Jr, Hele P (1970) Oestrogen-induced variation of lysine tRNA isoacceptors in chicken liver. Biochim Biophys Acta 224:413–422

    PubMed  CAS  Google Scholar 

  • Callagher RE, Tin RC, Gallo RC (1972) A common change of aspartyl-tRNA in polyoma-and SV40 transformed cells. Biochim Biophys Acta 272:568–582

    Google Scholar 

  • Canaday J, Guillemaut P, Gloeckler R, Weil JH (1980) Comparison of the nucleotide sequences of chloroplast tRNAsPhe and tRNAS3Leu from spinach and bean. Plant Sci Lett 20:57–62

    Article  CAS  Google Scholar 

  • Cedergren RJ, Cordeau JR (1973) The distribution of modified nucleosides in tRNAs. J Theor Biol 39:477–480

    Article  PubMed  CAS  Google Scholar 

  • Chang SH, Hecker L, Silberklang M, Brum CK, Baraett WE, RajBhandary UL (1976) The first nucleotide sequence of an organelle tRNA: chloroplastic tRNAPhe. Cell 9: 717–724

    Article  PubMed  CAS  Google Scholar 

  • Chapman RW, Morris RO, Zaerr JB (1976) Occurence of trans-ribosylzeatin in Agrobacterium tumefaciens tRNA. Nature 262: 153–154

    Article  PubMed  CAS  Google Scholar 

  • Chavancy G, Chevallier A, Fournier A, Garel JP (1979) Adaptation of iso-tRNA concentration to mRNA codon frequency in the eukaryote cell. Biochimie 61: 71–78

    Article  PubMed  CAS  Google Scholar 

  • Chen EY, Roe BA (1978) The nucleotide sequence of rat liver tRNA. Biochem Biophys Res Commun 82:235–246

    Article  PubMed  CAS  Google Scholar 

  • Chuang R, Doi RH (1972) Characterization of lysine tRNA from vegetative cells and spores of Bacillus subtilis. J Biol Chem 247: 3476–3484

    PubMed  CAS  Google Scholar 

  • Chuang R, Yamakawa T, Doi RH (1971) Identification of two lysine tRNA cistrons in Bacillus subtilis by hybridisation of lysyl-tRNA with DNA. Biochem Biophys Res Commun 43:710–716

    Article  PubMed  CAS  Google Scholar 

  • Clarkson SG, Runner MN (1971) Transfer RNA changes in Hela cells after vaccinia virus infection. Biochim Biophys Acta 238:498–502

    PubMed  CAS  Google Scholar 

  • Cohn WE (1957) Minor constituents of RNAs. Fed Proc 16: 166

    Google Scholar 

  • Cohn WE (1960) Pseudouridine, a carbon-carbon linked ribonucleoside in RNAs, isolation structure and chemical characteristics. J Biol Chem 235: 1488–1498

    PubMed  CAS  Google Scholar 

  • Cohn WE, Volkin, F (1951) Nucleoside-5’-phosphates from ribonucleic acids. Nature 167:483–484

    Article  CAS  Google Scholar 

  • Cornelis P, Claessen E, Claessen J (1975) Reversed phase chromatography from healthy and crown-gall tissues from Nicotiana tabacum. Nucleic Acids Res 2: 1153–1162

    Article  PubMed  CAS  Google Scholar 

  • Crick FHC (1966) Codon-anticodon pairing: the wobble hypothesis. J Mol Biol 19:548–555

    Article  PubMed  CAS  Google Scholar 

  • Davis FF, Allen FW (1957) Ribonucleic acids from yeast which contain a fifth nucleotide. J Biol Chem 227:907–915

    PubMed  CAS  Google Scholar 

  • Dejesus TGS, Gray ED (1971) Isoaccepting tRNA species in differing morphogenetic states in Rhodopseudomonas spheroïdes. Biochim Biophys Acta 254: 419–428

    PubMed  CAS  Google Scholar 

  • Dingermann T, Schmidt W, Kersten H (1977) Modified bases in tRNA of Dictyostelium discoideum: Alterations in the ribothymidine content during development. FEBS Lett 80:205–208

    Article  PubMed  CAS  Google Scholar 

  • Dingermann T, Ogilvie A, Pistel F, Mühlhofer W, Kersten H (1981) Reduced aminoacylation of asparagine-tRNA early in the developmental cycle of Dictyostelium discoideum: Modification pattern and possible significance of the unchanged isoacceptor tRNA3Asn. Hoppe Seylers Z Physiol Chem 362:763–773

    Article  PubMed  CAS  Google Scholar 

  • Dirheimer G, Keith G, Sibler AP, Martin RP (1979) The primary structure of tRNAs and their rare nucleosides. In: Schimmel PR, Söll D, Abelson JN (eds) Transfer RNA: Structure, properties and recognition. Cold Spring Harbor Lab, Cold Spring Harbor, New York, pp 19–41

    Google Scholar 

  • Doi RH, Kaneko I, Igaraci RT (1968) Patterns of valine tRNA of Bacillus subtilis under different growth conditions. J Biol Chem 243: 945–951

    PubMed  CAS  Google Scholar 

  • Dubois EG, Dirheimer G, Weil JH (1974) Methylation of yeast tRNAAsp by enzymes from cytoplasm, chloroplasts and mitochondria of Phaseolus vulgaris. Biochim Biophys Acta 374:332–341

    PubMed  CAS  Google Scholar 

  • Dunn DB, Flack IH (1970) Minor nucleotides in RNA. John Innes Inst Ann Rep 76

    Google Scholar 

  • Dunn DB, Hall RH (1975) Purines, pyrimidines, nucleosides and nucleotides: physical constants and spectral properties. In: Fasman GD (ed) Nucleic Acids. (Handbook of Biochemistry and Molecular Biology, 3rd ed, vol 1, CRC Press, Cleveland, Ohio pp 65–215)

    Google Scholar 

  • Dunn DB, Trigg MDM (1972) Minor nucleotides in leaf tRNA. John Innes Inst Ann Rep 142

    Google Scholar 

  • Dunn DB, Trigg MDM (1973) Minor nucleotides in tRNA. John Innes Inst Ann Rep 147

    Google Scholar 

  • Einset JW, Skoog FK (1977) Isolation and identification of ribosyl-cis-zeatin from transfer RNA of Corynebacterium fascians. Biochem Biophys Res Comm 79: 1117–1121

    Article  PubMed  CAS  Google Scholar 

  • Farkas WR (1980) Effect of diet on the queunosine family of tRNAs of germ-free mice. J Biol Chem 255: 6832–6835

    PubMed  CAS  Google Scholar 

  • Feinberg AM, Nakanishi K, Barciszewski J, Rafalski AJ, Augustyniak H, Wiewiorowski M (1974) Isolation and characterization of peroxy-y-base from tRNAphe of the plant Lupinus luteus. J Am Chem Soc 96: 7797–7800

    Article  PubMed  CAS  Google Scholar 

  • Feldman MY (1977) Minor components in tRNA: The location-function relationship. Prog Biophys Mol Biol 32:83–102

    Article  PubMed  CAS  Google Scholar 

  • Fleissner E, Borek E (1962) A new enzyme of RNA synthesis: RNA methylase. Proc Natl Acad Sci USA 48:1199–1203

    Article  PubMed  CAS  Google Scholar 

  • Fournier MJ, Peterkofsky A (1975) Formation of chromatographically unique species of tRNA during aminoacid starvation of relaxed-control E. coli. J Bacteriol 122: 538–548

    PubMed  CAS  Google Scholar 

  • Fournier M, Labouesse J, Dirheimer G, Fix C, Keith G (1978) Primary structure of bovine liver tRNATrp. Biochim Biophys Acta 521 : 198–208

    PubMed  CAS  Google Scholar 

  • Fradin A, Grühl H, Feldmann H (1975) Mapping of yeast tRNAs by two-dimensional electrophoresis on polyacrylamide gels. FEBS Lett 50: 185–189

    Article  PubMed  CAS  Google Scholar 

  • Frazer JM, Yang WK (1972) Isoaccepting tRNAs in liver and brain of young and old BC3F1 Mice. Arch Biocnem Biophys 153:610–618

    Article  CAS  Google Scholar 

  • Garel JP (1974) Functional adaptation of tRNA population. J Theor Biol 43:211–225

    Article  PubMed  CAS  Google Scholar 

  • Garel JP, Keith G (1977) Nucleotide sequence of Bombyx mori L.tRNA1Gly. Nature 269:350–352

    Article  PubMed  CAS  Google Scholar 

  • Garel JP, Mandel P, Chavancy G, Daillie J (1970) Functional adaptation of tRNA to fibroin biosynthesis in the silkgland of Bombyx mori L. FEBS Lett 7: 327–329

    Article  PubMed  CAS  Google Scholar 

  • Gauss DH, Sprinzl M (1981) Compilation of tRNA sequences. Nucleic Acids Res 9: rl-r23

    Article  PubMed  CAS  Google Scholar 

  • Gross HJ (1975) Natural modified nucleosides and chemical carcinogenesis: L-ethionine-de-pendent inhibition of N6 -dimethyladenosine and 5-methylcytidine synthesis on the tRNA level in vivo. Ann NY Acad Sci 255: 564–566

    Article  PubMed  CAS  Google Scholar 

  • Gross HJ, Raab C (1972) In vivo synthesis of tRNA1Tyr and tRNA2Tyr: Differences in “early” and “late log” E.coli MRE 600. Biochem Biophys Res Commun 46:2006–2011

    Article  PubMed  CAS  Google Scholar 

  • Gross HJ, Simsek M, Raba M, Limburg K, Heckman J, RajBhandary UL (1974) 2’-O-Methylribothymidine: a component of rabbit liver lysine transfer RNA. Nucleic Acids Res 1:35–43

    Article  PubMed  CAS  Google Scholar 

  • Grunberger D, Weinstein IB, Mushinski JF (1975) Deficiency of the Y base in a hepatoma phenylalanine tRNA. Nature 253:66–67

    Article  PubMed  CAS  Google Scholar 

  • Gupta RC, Woese CR (1980) Unusual modification patterns in the tRNAs of Archaebacteria. Curr Microbiol 4:245–249

    Article  CAS  Google Scholar 

  • Gupta RC, Roe BA, Randerath K (1979) The nucleotide sequence of human tRNAGly (anticodon GCC). Nucleic Acids Res 7:959–970

    Article  PubMed  CAS  Google Scholar 

  • Gurchinoff S, Kaiser II (1973) Pseudouridine deficiency in tRNAs from E. coli treated with 2-thiouracil. Biochemistry 12:3236–3241

    Article  PubMed  CAS  Google Scholar 

  • Hall RH (1963) Isolation of 1-methylinosine and inosine from yeast soluble RNA. Biochem Biophys Res Commun 13: 394–398

    Article  CAS  Google Scholar 

  • Hall RH (1964) Isolation of N6-(aminoacyl)adenosine from yeast ribonucleic acid. Biochemistry 3:769–773

    Article  PubMed  CAS  Google Scholar 

  • Hall RH (1971) The modified nucleosides in nucleic acids. Columbia University Press, New York

    Google Scholar 

  • Hall RH, Dunn DB (1975) Natural occurence of the modified nucleotides. In: Fasman GD (ed) Nucleic acids. (Handbook of Biochemistry and Molecular Biology, 3rd ed, CRC Press, Cleveland, Ohio vol 1, pp 216–250)

    Google Scholar 

  • Hall RH, Csonka L, David H, McLennan B (1967) Cytokinins in soluble RNA of plant tissues. Science 156:69–71

    Article  PubMed  CAS  Google Scholar 

  • Harris CL, Marashi F, Titchener EB (1976) Increased isoleucine acceptance by sulfur-deficient tRNA from E. coli. Nucleic Acids Res 3 : 2129–2142

    PubMed  CAS  Google Scholar 

  • Hatfield D, Portugal FH (1970) Seryl-tRNA in mammalian tissues: chromatographic differences in brain and liver and a specific response to the codon UGA. Proc Natl Acad Sci USA 67:1200–1206

    Article  PubMed  CAS  Google Scholar 

  • Hatfield D, Portugal FH, Caicuts M (1971) Transfer RNA specificity in mammalian tissues and codon response of seryl tRNA. Cancer Res 31:697–700

    PubMed  CAS  Google Scholar 

  • Hecht SM, Leonard NJ, Burrows WJ, Armstrong DJ, Skoog F, Occolowitz J (1969) Cytokinin of wheat germ tRNA: 6-(4-hydroxy-3-methyl-2-butenylamino)-2-methylthio-9-ß-D-ribofura-nosyl-purine. Science 166: 1272–1274

    Article  PubMed  CAS  Google Scholar 

  • Heckman JE, Sarnoff J, Alzner-Deweerd B, Yin S, RajBhandary UL (1980) Novel features in the genetic code and codon reading patterns in Neurospora crassa mitochondria based on sequences of six mitochondrial tRNAs. Proc Natl Acad Sci USA 77: 3159–3163

    Article  PubMed  CAS  Google Scholar 

  • Heyman T, Seror S, Desseaux B, Legault-Demare J (1967) Valine tRNA, I Chromatographic study of valine tRNA modifications during Bacillus subtilis growth. Biochim Biophys Acta 145:596–604

    PubMed  CAS  Google Scholar 

  • Heyman T, Menichi-Desseaux B, Legault-Demare J (1970) Valine tRNA, II Kinetics of aminoacylation of the different species of valine tRNA in Bacillus subtilis. Biochim Biophys Acta 199:71–78

    PubMed  CAS  Google Scholar 

  • Heyman T, Leidner J, Menichi-Desseaux B (1973) Chromatographic separation of two ionic strengh dependant conformations of valine tRNA of Bacillus subtilis. Biochimie 55:127–134

    Article  PubMed  CAS  Google Scholar 

  • Hoburg A, Aschhoff HJ, Kersten H, Mandershied U, Gassen HG (1979) Function of modified nucleosides 7-methylguanosine, ribothymidine and 2-thiomethyl-N6-(isopentenyl)adenosine in procaryotic tRNA. J Bacteriol 140:408–414

    PubMed  CAS  Google Scholar 

  • Hoffman JL, McCoy MT (1974) Stability of the nucleoside composition of tRNA during biological ageing of mice and mosquitoes. Nature 249: 558–559

    Article  PubMed  CAS  Google Scholar 

  • Holley RW, Apgar J, Everett GA, Madison JT, Marquisee M, Merril SH, Penswick JR, Zamir A (1965) Structure of ribonucleic acid. Science 147: 1462–1465

    Article  PubMed  CAS  Google Scholar 

  • Hosbach HA, Kubli E (1979) Transfer RNA in aging Drosophila II. Isoaccepting patterns. Mech Ageing Dev 10: 141–149

    Article  PubMed  CAS  Google Scholar 

  • Huang PC, Mann MB (1974) Comparative fingerprint and composition analysis of the three forms of 32P labeled phenylalanine tRNA from chloramphenicol treated E. coli. Biochemistry 13:4704–4710

    Article  PubMed  CAS  Google Scholar 

  • Isham KR, Stulberg MP (1974) Modified nucleosides in undermethylated phenylalanine tRNA from E. coli. Biochim Biophys Acta 340: 177–182

    PubMed  CAS  Google Scholar 

  • Ishikura H, Murao K, Yamada Y (1980) Primary structures of several tRNAs from Bacillus subtilis. EMBO-FEBS tRNA Workshop, Strasbourg

    Google Scholar 

  • Jackson CD, Lowing CC, Sells BH (1970) Studies on transfer RNA population during liver regeneration in rat. Biochim Biophys Acta 224:259–262

    Google Scholar 

  • Jacobson KB (1978) Mechanism of suppression in Drosophila VII. Correlation between disappearance of an isoacceptor of tyrosine tRNA and activation of the vermilion locus. Nucleic Acids Res 5:2391–2404

    Article  PubMed  CAS  Google Scholar 

  • Jacobson M, Hedgcoth C (1970) Levels of 5,6-dihydrouridine in relaxed and chloramphenicol tRNA. Biochemistry 9:2513–2519

    Article  PubMed  CAS  Google Scholar 

  • Juarez H, Skjold AC, Hedgcoth C (1975) Precursor relationship of phenylalanin tRNA from E.coli treated with chloramphenicol or starved for iron, methionine or cysteine. J Bacteriol 121 : 44–54

    PubMed  CAS  Google Scholar 

  • Kaneko I, Doi RH (1966) Alteration of valine-sRNA during sporulation of Bacillus subtilis. Proc Natl Acad Sci USA 55: 564–571

    Article  PubMed  CAS  Google Scholar 

  • Kasai H, Ohashi Z, Harada F, Nishimura S, Oppenheimer NJ, Crain PF, Liehr JG, von Minden DL, McCloskey JA (1975a) Structure of the modified nucleoside isolated from Escherichia coli transfer ribonucleic acid. 7-(4,5-cis-dihydroxy-l-cyclopenten-3-ylaminomethyl)-7-deaza-guanosine. Biochemistry 14:4198–4208

    Article  PubMed  CAS  Google Scholar 

  • Kasai H, Kuchino Y, Nihei K, Nishimura S (1975b) Distribution of the modified Q and its derivatives in animal and plant tRNAs. Nucleic Acids Res 2: 1931–1939

    Article  PubMed  CAS  Google Scholar 

  • Kasai H, Murao K, Nishimura S, Liehr JG, Crain PF, McCloskey JM (1976a) Structure determination of a modified nucleoside isolated from E.coli tRNA. N-[N-[9-ß-D-Ribofu-ranosylpurin-6-yl)carbamoyl]threonyl]2-amido-2-hydroxymethylpropane-l,3-diol. Eur J Bio-chem 69:435–443

    CAS  Google Scholar 

  • Kasai H, Nakanishi K, McFarlane RD, Togerson DF, Ohashi Z, McCloskey JA, Gross HJ, Nishimura S (1976b) The structure of Q* nucleoside isolated from rabbit liver tRNA. J Am Chem Soc 98:5044–5045

    Article  PubMed  CAS  Google Scholar 

  • Kasai H, Yamaizumi Z, Kuchino Y, Nishimura S (1979) Isolation of hydroxy-Y base from rat liver tRNAphe. Nucleic Acids Res 6: 993–999

    Article  PubMed  CAS  Google Scholar 

  • Katze JR (1975a) Relation of cell type and cell density to the degree of posttranscriptional modification of tRNALys and tRNAPhe. Biochim Biophys Acta 407:392–398

    PubMed  CAS  Google Scholar 

  • Katze JR (1975b) Alterations in SVT2 cell tRNAs in response to cell density and serum type. Biochim Biophys Acta 383: 131–139

    PubMed  CAS  Google Scholar 

  • Kawakami M, Nishio K, Takemura S, Kondo T, Goto T (1979) 5-(Carboxy-hydroxymethyl) uridine a new modified nucleoside located in the anticodon of tRNA2Gly from posterior silk gland of Bombyx mori. Nucleic Acids Res Symp Ser 6: s53–s55

    CAS  Google Scholar 

  • Keisel N, Vold B (1976) Undermethylated RNA from a relaxed strain of Bacillus subtilis: construction of the strain and analysis of the tRNA. J Bacteriol 1976:294–299

    Google Scholar 

  • Keith G, Dirheimer G (1980) Primary sequence of Bombyx mori posterior silkgland tRNAPhe. Biochem Biophys Res Commun 92: 109–115

    Article  PubMed  CAS  Google Scholar 

  • Keith G, Roy A, Ebel JP, Dirheimer G (1972) The primary structure of tRNATrp from brewer’s yeast I. Complete digestion with pancreatic ribonuclease and T1 ribonuclease. Biochimie 54:1405–1426

    Article  PubMed  CAS  Google Scholar 

  • Keith G, Rogg H, Dirheimer G, Menichi B, Heyman T (1976) Post-transcriptional modification of tyrosine tRNA as a function of growth in Bacillus subtilis. FEBS Lett 61: 120–123

    Article  PubMed  CAS  Google Scholar 

  • Kimura-Harada F, Saneyoshi M, Nishimura S (1971) 5-Methyl-2-thiouridine: a new sulfur-containing minor constituent from rat liver glutamic and lysine tRNAs. FEBS Lett 13:335–338

    Article  PubMed  CAS  Google Scholar 

  • Kitchingman GR, Fournier MJ (1976a) In vivo maturation of an undermodified E. coli leucine tRNA. Biochem Biophys Res Commun 73: 314–322

    Article  PubMed  CAS  Google Scholar 

  • Kitchingman GR, Fournier MJ (1976b) Structures of modification-deficient leucine-and phenylalanine-tRNAs produced during leucine starvation of relaxed control E. coli. Fed Proc 35:1615

    Google Scholar 

  • Kitchingman GR, Webb E, Fournier MJ (1976) Unique phenylalanine tRNA in relaxed control E. coli: Genetic origin and some functional properties. Biochemistry 15: 1848–1857

    Article  PubMed  CAS  Google Scholar 

  • Kuchino Y, Borek E (1978) Tumor-specific phenylalanine tRNA contains two supernumerary methylated bases. Nature 271:126–129

    Article  PubMed  CAS  Google Scholar 

  • Kuchino Y, Shindo-Okada N, Ando N, Watanabe S, Nishimura S (1981a) Nucleotide sequences of two aspartic acid tRNAs from rat liver and rat ascites hepatoma. J Biol Chem 256:9059–9062

    PubMed  CAS  Google Scholar 

  • Kuchino Y, Borek E, Grunberger D, Muchinski JF, Nishimura S (1981b) Changes of post-transcriptional modification of wye base in tumor-specific tRNAPhe. J Biol Chem 256:9059–9062

    PubMed  CAS  Google Scholar 

  • Lazzarini RA (1966) Differences in lysine-sRNA from spore and vegetative cells of Bacillus subtilis. Proc Natl Acad Sci USA 56: 185–190

    Article  PubMed  CAS  Google Scholar 

  • Lea PJ, Norris ND (1977) tRNA and aminoacyl-tRNA synthetases from higher plants. Prog Phytochem 4:121–167

    CAS  Google Scholar 

  • Liau MC, Lin GW, Knight CA, Hurlbert RB (1977) Inhibition of tRNA methylation by intercalating agents. Cancer Res 37:4202–4210

    PubMed  CAS  Google Scholar 

  • Lin FK, Furr TD, Chang SH, Horwitz J, Agris PF, Orthwerth BJ (1980) The nucleotide sequence of two bovine lens tRNAPhe. J Biol Chem 255:6020–6023

    PubMed  CAS  Google Scholar 

  • Littauer VZ, Inouye H (1973) Regulation of tRNA. Ann Rev Biochem 42:439–470

    Article  PubMed  CAS  Google Scholar 

  • Litwack MD, Peterkofsky A (1971) tRNA deficient in N6-(???2-isopentenyl) adenosine due to mevalonic acid limitation. Biochemistry 10:994–1000

    Article  PubMed  CAS  Google Scholar 

  • Lu LW, Chiang GH, Medina D, Randerath K (1976) Drug effects on nucleic acid modification I A specific effect of 5-azacytidine on mammalian tRNA methylation in vivo. Biochem Biophys Res Commun 68: 1094–1101

    Article  PubMed  CAS  Google Scholar 

  • Madison JT, Holley RW (1957) The presence of 5,6-dihydrouridylic acid in yeast “soluble” RNA. Biochem Biophys Res Commun 18: 153–157

    Article  Google Scholar 

  • Mann MB, Huang PC (1973) Behavior of chloramphenicol-induced phenylalanine tRNA during recovery from chloramphenicol treatment in E. coli. Biochemistry 12:5289–5294

    Article  PubMed  CAS  Google Scholar 

  • Marcu KB, Mignery RE, Dudok BS (1977) Complete nucleotide sequence and properties of the major species of glycine tRNA from wheat germ. Biochemistry 16:797–806

    Article  PubMed  CAS  Google Scholar 

  • Marmor JB, Dickerman HW, Peterkofsky A (1971) Studies on methyl-deficient methionine tRNA from E. coli. J Biol Chem 246: 3464–3473

    PubMed  CAS  Google Scholar 

  • Martin RP, Schneller JM, Stahl AJC, Dirheimer G (1976) Studies of odd bases in yeast mitochondrial tRNA II Characterization of rare nucleotides. Biochem Biophys Res Commun 70:997–1002

    Article  PubMed  CAS  Google Scholar 

  • Martin RP, Schneller JM, Stahl AJC, Dirheimer G (1977) Study on yeast mitochondrial tRNA by two-dimensional poly-acrylamide gel electrophoresis: Characterization of isoaccepting species and search for imported cytoplasmic tRNAs. Nucleic Acids Res 4: 3497–3510

    Article  PubMed  CAS  Google Scholar 

  • McCloskey JA, Nishjmura S (1977) Modified nucleosides in tRNA. Acc Chem Res 11:403–410

    Article  Google Scholar 

  • McMillian RA, Arceneaux JL (1975) Alteration of tyrosine accepting tRNA species in wildtype and asporogenous strains of Bacillus subtilis. J Bacteriol 122:526–531

    PubMed  CAS  Google Scholar 

  • Menichi B, Heyman T (1976) Study of tyrosine tRNA modification in relation to sporulation in Bacillus subtilis. J Bacteriol 127:268–280

    PubMed  CAS  Google Scholar 

  • Menichi B, Arnold HH, Heyman T, Dirheimer G, Keith G (1980) Primary structure of Bacillus subtilis tRNATyr. Biochem Biophys Res Commun 95:461–467

    Article  PubMed  CAS  Google Scholar 

  • Munns TW, Katzman PA (1973) The methylation of tRNA in KB cells after treatment with actinomycin D. Biochem Biophys Res Commun 53: 119–125

    Article  PubMed  CAS  Google Scholar 

  • Munz P, Leupold U, Agris P, Kohli J (1981) In vivo decoding rules in Schizosaccharomyces pombe which are at variance with in vitro data. Nature 294:187–188

    Article  PubMed  CAS  Google Scholar 

  • Murao K, Ishikura H (1978) A new uridine derivative located in the anticodon of tRNA1Gly from Bacillus subtilis. Nucleic Acids Res (special publication) 5: s333

    Google Scholar 

  • Murao K, Sanegoshi M, Harada F, Nishimura S (1970) Uridine-5-oxyacetic acid: A new minor constituent from E. coli valine tRNA 1. Biochem Biophys Res Commun 38: 657–662

    Article  PubMed  CAS  Google Scholar 

  • Murao K, Tanabe T, Ishii F, Namiki M, Nishimura S (1972) Primary sequence of arginine tRNA from E. coli. Biochem Biophys Res Commun 47: 1332–1337

    Article  PubMed  CAS  Google Scholar 

  • Murao K, Ishikura H, Albani M, Kersten H (1978) On the biosynthesis of 5-methoxyuridine and uridine-5-oxyacetic acid in specific procaryotic tRNAs. Nucleic Acids Res 5: 1273–1387

    Article  PubMed  CAS  Google Scholar 

  • Murthy MRV, Roux H, Thenot JP (1974) Isoacceptor tRNAs for glutamate, glutamine, aspartate and asparagine in calf brain. J Neurochem 22: 19–22

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi K, Blobstein S, Funamizu M, Furutachi N, Van Lear G, Grunberger D, Lanks K, Weinstein IB (1971), Structure of the peroxy-Y base from liver tRNAphe. Nature (NB) 234:107–109

    Article  CAS  Google Scholar 

  • Nau F (1976) The methylation of tRNA. Biochimie 58:629–645

    Article  PubMed  CAS  Google Scholar 

  • Nishimura S (1972) Minor components in tRNA: Their caracterization, location and function. Prog Nucleic Acid Res Mol Biol 12:49–85

    Article  PubMed  CAS  Google Scholar 

  • Nishimura S (1978) Modified nucleosides and isoaccepting tRNA. In: Altman S (ed) Transfer RNA. MIT Press, Cambridge, MA, pp 168–195

    Google Scholar 

  • Nishimura S (1979a) Modified nucleosides in tRNA. In: Schimmel PR, Söll D, Abelson JN (eds) Transfer RNA: structure, properties, and recognition. Cold Spring Harbor Lab, Cold Spring Harbor, pp 59–79

    Google Scholar 

  • Nishimura S (1979b) Structures of modified nucleosides found in tRNA. In: Schimmel PR, Söll D,Abelson JN (eds) Transfer RNA: structure, properties, and recognition. Cold Spring Harbor Lab, Cold Spring Harbor, pp 547–549

    Google Scholar 

  • Ohashi Z, Maeda M, McCloskey JA, Nishimura S (1974) 3-(3-Amino-3-carboxypropyl) uridine: a novel modified nucleoside isolated from E. coli phenylalanine tRNA. Biochemistry 13:2620–2625

    Article  CAS  Google Scholar 

  • Osorio-Almeida L, Guillemaut P, Keith G, Canaday J, Weil JH (1980) Primary structure of three leucine tRNAs from bean chloroplasts. Biochem Biophys Res Commun 92:102–108

    Article  PubMed  CAS  Google Scholar 

  • Osterman LA (1979) Participation of tRNA in regulation of protein biosynthesis at the translational level in eukaryotes. Biochimie 61: 323–342

    Article  PubMed  CAS  Google Scholar 

  • Owenby RK, Stulberg MP, Jacobson KB (1979) Alteration of the Q family of tRNAs in adult Drosophila melanogaster as a function of age, nutrition and genotype. Mech Ageing Dev 11:91–103

    Article  PubMed  CAS  Google Scholar 

  • Palantnik CM, Katz ER, Brenner M (1977) Isolation and characterization of tRNAs from Dictyostelium discoideum during growth and development. J Biol Chem 252: 694–703

    Google Scholar 

  • Pergolizzi RG, Engelhardt DT, Grunberger D (1978) Formation of phenylalanine tRNA lacking the Wye base in Vero cells during methionine starvation. J Biol Chem 253:6341–6343

    PubMed  CAS  Google Scholar 

  • Raba M, Limburg K, Burghagen M, Katze JR, Simsek M, Heckman JE, RajBhandary UL, Gross HJ (1979) Nucleotide sequence of three isoaccepting lysine tRNAs from rabbit liver and SV40-transformed mouse fibroblasts. Eur J Biochem 97:305–318

    Article  PubMed  CAS  Google Scholar 

  • Raettig R, Kersten H, Weissenbach J, Dirheimer G (1977) Methylation of an adenosine in the D-loop of specific tRNAs from yeast by a procaryotic tRNA (adenosine-1) methyltransferase. Nucleic Acids Res 4: 1769–1782

    Article  PubMed  CAS  Google Scholar 

  • Randerath E, Gopalakrishnan AS, Randerath K (1978) Transfer RNA in hepatomas. In: Morris HP, Criss WE (eds) Morris hepatomas, mechanisms of regulation. Plenum, New York London, pp 517–564

    Google Scholar 

  • Randerath K, Randerath E (1973) Chemical post-labeling methods for the base composition and sequence analysis of RNA. J Chromatogr 82:59–74

    Article  PubMed  CAS  Google Scholar 

  • Randerath K, Agrawal HP, Randerath E (1981) Tumor mitochondrial tRNAs: The nucleotide sequence of mitochondrial tRNAUAGLeu from Morris hepatoma 5123 D. Biochem Biophys Res Commun 100:732–737

    Article  PubMed  CAS  Google Scholar 

  • Randerath E, Gopalakrishnan AS, Gupta RC, Agrawal HP, Randerath K (1981) Lack of specific ribose methylation at guanosine 17 in Morris hepatoma 5123 D tRNAIGASer. Cancer Res 41:2863–2867

    PubMed  CAS  Google Scholar 

  • Raska K Jr, Frohwirth DH, Schlessinger RW (1970) Transfer RNA in KB cells infected with adenovirus type 2. J Virol 5:464–69

    PubMed  CAS  Google Scholar 

  • Reddy R, Busch H (1981) U snRNAs of nuclear snRNP’s In: Busch H (ed) The cell Nucleus, vol 8. Academic Press, New York London, pp 261–306

    Google Scholar 

  • Reszelbach R, Greenberg R, Pirtle R, Prasad R, Marcu K, Dudock B (1977) Isolation and comparison of ribothymidine-lacking tRNAs of fetal, newborn and adult bovine tissues. Biochim Biophys Acta 475:383–392

    PubMed  CAS  Google Scholar 

  • Rodeh R, Feldman M, Littauer UZ (1967) Properties of soluble ribonucleic acid methylases from rat liver. Biochemistry 6:451–460

    Article  PubMed  CAS  Google Scholar 

  • Roe BA, Stankiewicz AF, Rizi HL, Weisz C, Di Lauro MN, Pike D, Chen CY, Chen EY (1979) Comparison of rat liver and Walker 256 carcinosarcoma tRNA. Nucleic Acids Res 6:673–688

    Article  PubMed  CAS  Google Scholar 

  • Rogg H, Müller P, Keith G, Staehelin M (1977) Chemical basis for brain-specific serine tRNA. Proc Natl Acad Sci USA 74: 4243–4247

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg AH, Gefter ML (1969) An iron dependant modification of several tRNA species in E. coli. J Mol Biol 46: 581–584

    Article  PubMed  CAS  Google Scholar 

  • Salomon R, Giveon D, Kimhi Y, Littauer UZ (1976) Abundance of tRNAPhe lacking the peroxy Y-base in mouse. Biochemistry 15:5258–5262

    Article  PubMed  CAS  Google Scholar 

  • Schweizer MP, McGrath K, Baczynskyj L (1970) The isolation and characterization of N-[9-ß-D-ribofuranosyl)-purin-6-ylcarbamoyl] glycine from yeast tRNA. Biochem Biophys Res Commun 40: 1046–1052

    Article  PubMed  CAS  Google Scholar 

  • Sekiya T, Oda K (1972) The altered pattern of tRNA in SV 40-infected and transformed cells. Virology 47:168–180

    Article  PubMed  CAS  Google Scholar 

  • Sharma OK, Borek E (1970) Hormonal effect on tRNA methylases and on serine tRNA. Biochemistry 9:2507–2519

    Article  PubMed  CAS  Google Scholar 

  • Shaw PA, Tidwell JT, Chia LLSY, Randerath E, Randerath K (1978) Base composition studies on transfer RNA from normal and regenerating rat liver. Biochim Biophys Acta 518:457–463

    PubMed  CAS  Google Scholar 

  • Shindo-Okada N, Kuchino Y, Harada F, Okada N, Nishimura S (1981a) Biological and structural differences between tRNAVal species isolated from rat ascite hepatoma cells and normal rat liver. J Biochem 90:535–544

    PubMed  CAS  Google Scholar 

  • Shindo-Okada N, Terada M, Nishimura S (1981b) Changes in amount of hypo-modified tRNA having guanine in place of queuine during erythroid differentiation of murine erythroleu-kemia cells. Eur J Biochem 115:423–428

    Article  PubMed  CAS  Google Scholar 

  • Sibler AP, Bordonné R, Dirheimer G, Martin RP (1980) Structure primaire d’un tryptophane-tRNA de mitochondrie de levure capable de traduire le codon de terminaison UGA. C R Acad Sci [D] (Paris) 290:595–598

    Google Scholar 

  • Singhal RP, Völd B (1976) Changes in tRNA of Bacillus subtilis during different growth phases. Nucl Acids Res 5: 1249–1261

    Google Scholar 

  • Söll D (1971) Enzymatic modification of tRNA. Science 173:293–299

    Article  PubMed  Google Scholar 

  • Sprague KU, Hagenbuechle O, Zuniga MC (1977) The nucleotide sequence of two silk gland alanine tRNAs: implication for fibroin synthesis and for initiator tRNA structure. Cell 11:561–570

    Article  PubMed  CAS  Google Scholar 

  • Spotts CR, Szulmajster S (1962) Synthèse de l’acide ribonucléique et des protéines dans Bacillus subtilis sporogène et asporogène. Biochim Biophys Acta 61: 635–638

    CAS  Google Scholar 

  • Sueoka N, Kano-Sueoka T (1964) A specific modification of leucyl-sRNA of E. coli after phage T2 infection. Proc Natl Acad Sci USA 52: 1535–1540

    Article  PubMed  CAS  Google Scholar 

  • Sueoka N, Kano-Sueoka T (1970) Transfer RNA and cell differentiation. Prog Nucleic Acid Res Mol Biol 10:23–55

    Article  PubMed  CAS  Google Scholar 

  • Takemoto T, Takeishi F, Nishimura S, Ukito T (1973) Transfer of valine into rabbit haemoglobin from various isoaccepting species of valyl-tRNA differing in codon recognition. Eur J Biochem 38: 489–496

    Article  PubMed  CAS  Google Scholar 

  • Tidwell T (1970) The methylation of tRNA during regeneration of the liver. J Cell Biol 46:370–378

    Article  PubMed  CAS  Google Scholar 

  • Thimmapaya B, Cherayil JD (1974) Unique presence of 2-methylthio-ribosylzeatin in the tRNA of bacterium Pseudomonas aeruginosa. Biochem Biophys Res Commun 60: 665–672

    Article  Google Scholar 

  • Tseng WC, Medina D, Randerath K (1978) Specific inhibition of tRNA methylation and modification in tissues of mice treated with 5-fluorouracil. Cancer Res 38: 1250–1257

    PubMed  CAS  Google Scholar 

  • Völd BS (1970) Comparison of lysyl-tRNA species from vegetative cells and spores of Bacillus subtilis by methylated albumin kieselguhr and reversed phase chromatography. J Bacteriol 102:711–715

    PubMed  Google Scholar 

  • Völd BS (1973) Analysis of isoaccepting tRNA species of Bacillus subtilis: chromatographic differences between tRNAs from spores and cells in exponential growth. J Bacteriol 113:825–833

    PubMed  Google Scholar 

  • Völd BS (1975) ImGerhard P, Costilow R, Sadoff H (eds) Spores VI. AMS, Washington DC, pp 282–289

    Google Scholar 

  • Völd BS (1978) Post-transcriptional modification of the anticodon loop region: Alteration in isoaccepting species of tRNAs during development in Bacillus subtilis. J Bacteriol 135:124–132

    PubMed  Google Scholar 

  • Vrejman HJ (1973) Isolation of cis and trans isomers of ribosylzeatin and 2-methylthio-ribosylzeatin from plant tRNA preparation. Diss Abstr Int [B] 34:5842–5843

    Google Scholar 

  • Watanabe K, Kuchino Y, Yamaizumi Z, Kato M, Oshima T, Nishimura S (1979) Nucleotide sequence of formylmethionine tRNA from an extreme thermophile Thermus thermophilus HB8. J Biochem 86:893–905

    PubMed  CAS  Google Scholar 

  • Waters LC (1969) Altered chromatographic properties of tRNA from chloramphenicol treated E. coli. Biochem Biophys Res Commun 37:296–304

    Article  PubMed  CAS  Google Scholar 

  • Waters LC, Shugart L, Yang WK, Best AN (1973) Some physical and biological properties of 4-thiouridine-and dihydrouridine deficient tRNA from chloramphenicol treated E. coli. Arch Biochem Biophys 156:780–793

    Article  PubMed  CAS  Google Scholar 

  • Weissenbach J (1977) Purification et structure primaire des tRNA2Arg, tRNA3Arg et tRNAla et b Thr de levure de bière. Etude des propriétés codantes des tRNAArg de levure de biere. Ph. D. dissertation, Université Louis Pasteur, Strasbourg

    Google Scholar 

  • Weissenbach J, Dirheimer G (1978) Pairing properties of the methylester of 5-carboxymethyl uridine in the wobble position of yeast tRNA3Arg. Biochim Biophys Acta 518: 350–354

    Google Scholar 

  • Weissenbach J, Grosjean H (1981) Effect of threonylcarbamoyl modification (t6A) in yeast tRNA3Arg on codon -anticodon and antieodon-anticodon interaction. A thermodynamic and kinetic evaluation. Eur J Biochem 116: 207–213

    Article  PubMed  CAS  Google Scholar 

  • Weil JH (1979) Cytoplasmic and organellar tRNAs in plants. In: Hall TC, Devis JW (eds) Nucleic acids in plants. CRC, Boca Raton, FL, pp 143–192

    Google Scholar 

  • Wettsteim FO, Stent GS (1968) Physiologically induced changes in the property of phenylalanine tRNA in E. coli. J Mol Biol 38:25–40

    Article  Google Scholar 

  • White BN, Lassam NJ (1979) An analysis of Q and Q* containing tRNAs during the development of Lucilia sericata, Musca domestica and Tenebrio molitor. Insect Biochem 9:375–378

    Article  CAS  Google Scholar 

  • White BN, Tener GM, Holden J, Suzuki DT (1973a) Activity of tRNA modifying enzyme during the development of Drosophila and its relationship in the su(s) locus. J Mol Biol 74:635–651

    Article  PubMed  CAS  Google Scholar 

  • White BN, Tener GM, Holden J, Suzuki DT (1973b) Analysis of tRNAs during the development of Drosophila. Dev Biol 33: 185

    Article  PubMed  CAS  Google Scholar 

  • Wosnick MA, White BN (1977) A doubtful relationship between tyrosine tRNA and suppression of the vermilion mutant in Drosophila. Nucleic Acids Res 4: 3919–3930

    Article  PubMed  CAS  Google Scholar 

  • Wosnick MA, White BN (1978) Purification and nucleotide composition of a Q*-containing aspartic acid tRNA from Drosophila. Biochem Biophys Res Commun 81: 1131–1138

    Article  PubMed  CAS  Google Scholar 

  • Wust CJ, Rosen L (1972) Aminoacylation and methylation of tRNA as a function of age in the rat. Exp Gerontol 7:331–343

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y, Ishikura H (1981) The presence of N-[(9-ß-D-ribofuranosyl-2-methylthiopurin 6-yl)carbamoyl] threonine in lysine tRNA1 from Bacillus subtilis. J Biochem 89:1589–1591

    PubMed  CAS  Google Scholar 

  • Yamada Y, Murao K, Ishikura H (1981) 5-(carboxymethylaminomethyl)-thiouridine, a new modified nucleoside found at the first letter position of the anticodon. Nucleic Acids Res 9:1933–1938

    Article  PubMed  CAS  Google Scholar 

  • Yamaizumi Z, Nishimura S, Limburg K, Raba M, Gross HJ, Crain PF, McCloskey JA (1979) Structure elucidation by high resolution mass spectrometry of a highly modified nucleoside from mammalian tRNA N-[(9-ß-D-ribofuranosyl-2-methylthiopurin-6-yl) carbamoyl] threonine. J Am Chem Soc 101: 2224–2225

    Article  CAS  Google Scholar 

  • Yokoyama S, Miyazawa T, Iitaka Y, Yamaizumi Z, Kasai H, Nishimura S (1979) Three-dimensional structure of hyper-modified nucleoside Q located in the wobbling position of tRNA. Nature 282: 107–109

    Article  PubMed  CAS  Google Scholar 

  • Zachau HG, Dutting D, Feldmann H (1966) The structure of two serine tRNAs. Hoppe Seylers Z Physiol Chem 347: 212–235

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin • Heidelberg

About this chapter

Cite this chapter

Dirheimer, G. (1983). Chemical Nature, Properties, Location, and Physiological and Pathological Variations of Modified Nucleosides in tRNAs. In: Nass, G. (eds) Modified Nucleosides and Cancer. Recent Results in Cancer Research/Fortschritte der Krebsforschung/Progrès dans les recherches sur Ie cancer, vol 84. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81947-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81947-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81949-0

  • Online ISBN: 978-3-642-81947-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics