Skip to main content

Part of the book series: Topics in Current Physics ((TCPHY,volume 22))

Abstract

This chapter is especially devoted to beginners, that is to say to those who are perhaps experienced in optics but who are not specialists in microwave theory. We first derive the well-known grating formula from Maxwell equations and the associated boundary conditions. Then we give an idea of the different methods which can be used to predict theoretically the efficiencies of a grating, when the groove shape and the index of the material are known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.W.S. Rayleigh: Proc. Roy. Soc. A 79, 399 (1907)

    ADS  Google Scholar 

  2. R. Petit: Opt. Acta 14, 301–310 (1967)

    Article  ADS  Google Scholar 

  3. U. Fano: J. Opt. Soc. Am. 31, 213 (1941)

    Article  ADS  Google Scholar 

  4. W.C. Meecham: J. Appl. Phys. 27, 361 (1956)

    Article  MATH  ADS  Google Scholar 

  5. G.W. Stroke: Rev. Opt. 39, 350 (1960)

    Google Scholar 

  6. P. Bousquet: C. R. Acad. Sci. 256, 3422 (1963)

    MATH  MathSciNet  Google Scholar 

  7. P. Bousquet: C. R. Acad. Sci. 257, 80 (1963)

    Google Scholar 

  8. R. Petit: Rev. Opt. 42, 263 (1963)

    Google Scholar 

  9. R. Deleuil: C. R. Acad. Sci. 258, 506 (1963)

    Google Scholar 

  10. C. Janot, A. Hadni: J. Phys. 24, 1073 (1963)

    Article  Google Scholar 

  11. E.A. Yakovlev: Opt. Spektr. 19, 417 (1965)

    Google Scholar 

  12. R. Petit, M. Cadilhac: C. R. Acad. Sci., Ser. A–B, 262, 468 (1966)

    Google Scholar 

  13. G.R. Jiracek: IEEE Trans. AP-21, 393 (1973)

    ADS  Google Scholar 

  14. B.A. Lippmann: J. Opt. Soc. Am. 43, 408 (1953)

    Article  Google Scholar 

  15. R.F. Millar: Proc. Cambridge Phil. Soc. 69, 217 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  16. M. Nevière, M. Cadilhac: Opt. Commun. 2, 235 (1970)

    Article  ADS  Google Scholar 

  17. A. Marechal, G.W. Stroke: C. R. Acad. Sci. 249, 2042 (1959)

    Google Scholar 

  18. R.F. Millar: Proc. Cambridge Phil. Soc. 69, 175 (1971)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. H. Ikuno, K. Yasuura: IEEE Trans. AP-2, 657 (1973)

    ADS  Google Scholar 

  20. R.F. Millar: Radio Science 8, 785 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  21. H.A. Kalhor: IEEE Trans. AP-24, 884 (1976)

    ADS  Google Scholar 

  22. R. Petit: Rev. Opt. 45, 249 (1966)

    Google Scholar 

  23. R. Petit, M. Cadilhac: C. R. Acad. Sci. 259, 2077 (1964)

    MATH  MathSciNet  Google Scholar 

  24. R. Petit: C. R. Acad. Sci. 260, 4454 (1965)

    MathSciNet  Google Scholar 

  25. J. Pavageau, J. Bousquet: Opt. Acta 17, 469 (1970)

    Article  ADS  Google Scholar 

  26. J. Van Bladel: Electromagnetic Fields (McGraw-Hill, New York 1964)

    Google Scholar 

  27. A. Wirgin: Alta frequenza, Selected papers from the URSI Symp. 38, 327 (1969)

    Google Scholar 

  28. A. Wirgin: Thèse A.O. 1429, Faculté des Sciences d’Orsay (1967)

    Google Scholar 

  29. A. Wirgin, R. Deleuil: J. Opt. Soc. Am. 59, 1348 (1969)

    Article  ADS  Google Scholar 

  30. D. Maystre, R. Petit: Opt. Commun. 5, 90 (1972)

    Article  ADS  Google Scholar 

  31. J.L. Roumiguières, D. Maystre, R. Petit: Opt. Commun. 7, 402 (1973)

    Article  ADS  Google Scholar 

  32. J.L. Roumiguières: Thèse de 3ème cycle, Université d’Aix-Marseille III, Centre de St-Jérôme (1976)

    Google Scholar 

  33. J.L. Roumiguières, D. Maystre, R. Petit: Proc. fifth Colloquium on Microwave Communication, Budapest (1974)

    Google Scholar 

  34. S. Jovicevic, S. Sesnic: J. Opt. Soc. Am. 62, 865 (1972)

    Article  ADS  Google Scholar 

  35. T. Itoh, R. Mittra: IEEE Trans. MTT-27, 319 (1969)

    Google Scholar 

  36. R. Petit: Rev. Opt. 45, 353 (1966)

    Google Scholar 

  37. G. Cerutti-Maori, R. Petit, M. Cadilhac: C. R. Acad. Sci., Ser. B 268; 1060 (1969)

    Google Scholar 

  38. M. Nevière, P. Vincent: Opt. Acta 23, 557 (1976)

    Article  ADS  Google Scholar 

  39. M. Nevière, M. Cadilhac, R. Petit: IEEE Trans, AP-21, 37 (1973)

    ADS  Google Scholar 

  40. J. Chandezon: Thèse d’Etat, Université de Clermont-Ferrand II (1979)

    Google Scholar 

  41. D. Marcuse: Bell Syst. Tech. J. 55, 1295 (1976)

    Google Scholar 

  42. J.P. Hugonin, R. Petit: Opt. Commun. 20, 360 (1977)

    Article  ADS  Google Scholar 

  43. P. Facq: Ann. Telecommunic. 31, 99 (1976)

    Google Scholar 

  44. P. Facq: Thèse A.O. 12470, Université de Limoges (1977)

    Google Scholar 

  45. H. Akaïé: SIAM J. Appl. Math. 24, 234 (1973)

    Article  MathSciNet  Google Scholar 

  46. W.F. Trench: SIAM J. Appl. Math. 12, 515 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  47. B.W. Ross: Analytic Functions and Distributions in Physics and Engineering (Wiley, New York 1969) pp.289–360

    Google Scholar 

  48. E.M. de Jager: In Mathematics Applied to Physics, ed. by E. Roubine (Springer, Berlin, Heidelberg, New York 1970) pp.52–109

    Google Scholar 

  49. L. Schwartz: Théorie des Distrbutions (Hermann, Paris 1966)

    Google Scholar 

  50. L. Schwartz: Mathematics for Physical Sciences (Addison-Wesley, London 1967)

    Google Scholar 

  51. A. Wirgin: Sur la théorie de Raleigh de la diffraction d’une onde par une surface sinusoidale. C.R. Acad. Sci. B. 179, 288 (1979)

    Google Scholar 

  52. A. Wirgin: Sur trois variantes de la theorie de Rayleigh de la diffraction d’une onde par une surface sinusoïdale. C.R. Acad. Sci. A 259, 289 (1979)

    Google Scholar 

  53. A. Wirgin: Aspects numériques du problème de la diffraction d’une onde par une surface sinusoidale. C.R. Acad. Sci. B 273, 289 (1979)

    Google Scholar 

  54. A.K. Jordan, R.H. Lang: Electromagnetic scattering patterns from sinusoidal surfaces. Radio Sci. 14(6), 1077–1088 (1979)

    Article  ADS  Google Scholar 

  55. J.A. DeSanto: Sttering from a sinusoid: derivation of linear equations for the field amplitudes. J. Acoust. Soc. Am. 57, 5 (1975)

    Article  ADS  Google Scholar 

  56. J.P. Hugonin, R. Petit, M. Cadilhac: On the use of plane wave expansions to describe the field diffracted by a grating. Submitted for publication in J. Opt. Soc. Am.

    Google Scholar 

  57. D. Maystre, M. Cadilhac: A phenomenological theory for gratings, perfect blazing for polarized light in nonzero deviation mounting. Proceedings of the International U.R.S.I. Symposium, Munich (August 1980)

    Google Scholar 

  58. D. Maystre: A new analitical property of ruled diffraction gratings: perfect blazing at Rayleigh wavelength. Proceedings of the International U.R.S.I. Symposium, Munich (August 1980)

    Google Scholar 

  59. T. Namioka, T. Harada, K. Yasuura: Diffraction gratings in Japan. Opt. Acta 26, 1021 (1979)

    Google Scholar 

  60. J. Chandezon, D. Maystre, G. Raoult: A new theoretical method for diffraction gratings and its numerical application. J. Opt. 11, 235–241 (1980)

    Article  ADS  Google Scholar 

  61. H.A. Kalhor: EM scattering by a array of perfectly conducting strips by a physical optics approximation. IEEE Trans. AP-28, 277 (1980)

    ADS  Google Scholar 

  62. G.M. Whitman and F. Schwering: Reciprocity identity for periodic surface scattering. IEEE Trans. AP-27, 252–254 (1979)

    ADS  Google Scholar 

  63. A. Gavrielides, P. Peterson: Power losses in lamellar gratings. Appl. Opt. 18, 4168 (1979)

    Article  ADS  Google Scholar 

  64. A. Basu, J.M. Ballantyne: Random fluctuations in first-order waveguide grating filters. Appl. Opt. 18, 2575 (1979)

    Article  ADS  Google Scholar 

  65. K. Yasuura, K. Shimohara, T. Miyamoto: Numerical analysis of a thin film waveguide by mode-matching method. J. Opt. Soc. Am. 70, 183 (1980)

    Article  ADS  Google Scholar 

  66. M.G. Moharam, T.K. Gaylord, R. Magnusson: Bragg diffraction of finite beams by thick gratings. J. Opt. Soc. Am. 70, 300 (1980)

    Article  ADS  Google Scholar 

  67. R.S. Chu, J.A. Kong: Diffraction of optical beams with arbitrary profiles by a periodically modulated layer. J. Opt. Soc. Am. 70,1 (1980)

    Google Scholar 

  68. J.R. Fox: General modal theory of scalar wave scattering by periodic structures. Opt. Acta 27, 289–305 (1980)

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Petit, R. (1980). A Tutorial Introduction. In: Petit, R. (eds) Electromagnetic Theory of Gratings. Topics in Current Physics, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81500-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81500-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81502-7

  • Online ISBN: 978-3-642-81500-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics