Skip to main content

Cell-Membrane Activation of Macrophage Function

  • Chapter
Lymphocytes, Macrophages, and Cancer

Abstract

During the lifetime of any cell, the cell’s activity varies from one time to the next as the function which it serves are called on by the body. Since cells are complex and have multiple functions, it is unlikely that changes in one function necessarily occur synchronously with changes in other functions. It is therefore apparent that to speak of “activation” of cells is imprecise unless the function which is activated is precisely defined. This has led to some confusion in the macrophage field, where the cells concerned are motile, phagocytic, capable of differentiation and mitosis, and active in both non-specific and specific immune reactions. The term “activated” is most frequently and most acceptably used to refer to a population of macrophages found in vivo under certain experimental conditions, e.g. following injection of Bacillus Calmette-Guérin (BCG) or other stimulants, which, compared to control populations, show enhanced cytotoxic activity, for example against bacteria such as Listeria spp. (25) or against tumour cells (2) or in graft-versus-host reactions (11). These activated macrophages also frequently show other changes, e.g. an increase in phagocytic activity and an increased tendency to spread on substrata (28) or increased metabolic activity (10).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adolphe, M., Fontagne, J., Pelletier, M., Giroud, J.P.: Induction of DNA synthesis in rat macrophages in vitro by inflammatory exudate. Nature 253, 637 (1975)

    Article  PubMed  CAS  Google Scholar 

  2. Alexander, P., Evans, R.: Endotoxin and double stranded RNA render macrophage cytotoxic. Nature (New Biol.) 232, 7 6 (1971)

    Google Scholar 

  3. Alford, R.H.: Metal cation requirements for phytohaemagglutinin-induced transformation of human peripheral blood lymphocytes. J. Immunol. 104, 698 (1970)

    PubMed  CAS  Google Scholar 

  4. Allison, A.C.: Mechanism of movement and maintenance of polarity in leucocytes. Antibodies and chemotherapy 19, 191 (1974)

    CAS  Google Scholar 

  5. Allison, A.C., Davies, P., De Petris, S.: Role of contractile microfilaments in macrophage movement and endocytosis. Nature (New Biol.) 232, 153 (1971)

    CAS  Google Scholar 

  6. Allwood, G., Asherson, G.L., Davey, M.J., Goodford, P.J.: The early uptake of radioactive calcium by human lymphocytes treated with phytohaemagglutinin. Immunol. 21, 509 (1971)

    CAS  Google Scholar 

  7. Bandmann, V., Rydgren, L., Norberg, B.: The difference between random movement and Chemotaxis. Exp. Cell. Res. 88, 63 (1974)

    Article  PubMed  CAS  Google Scholar 

  8. Bhisey, A.N., Freed, J.J.: Ameboid movement induced in cultured macrophages by colchicine and vinblastine. Exp. Cell. Res. 64, 419 (1971)

    Article  PubMed  CAS  Google Scholar 

  9. Bhisey, A.N., Freed, J.J.: Altered movement of endosomes in colchicine- treated cultured macrophages. Exp. Cell. Res. 64, 430 (1971)

    Article  PubMed  CAS  Google Scholar 

  10. Blanden, R.V.: Modification of macrophage function. J. reticulo-endothel. Soc. 5, 179 (1968)

    CAS  Google Scholar 

  11. Blanden, R.V.: Increased antibacterial resistance and immunodepression during graft-versus-host reactions in mice. Transplantation 7, 484 (1969)

    Article  PubMed  CAS  Google Scholar 

  12. Carruthers, B.M.: Leukocyte motility I. Method of study, normal variation, effect of physical alterations in environment and effect of iodoacetate. Can. J. Physiol. Pharmacol. 44, 475 (1966)

    Article  PubMed  CAS  Google Scholar 

  13. Carruthers, B.M.: Leukocyte motility II. Effect of absence of glucose in medium: effect of presence of deoxyglucose, dinitrophenyl, puromycin, actinomycin D and trypsin on the response to chemotactic substance: effect of segregation of cells from chemotactic substance. Can. J. Physiol. Pharmacol. 45, 269 (1967)

    Article  PubMed  CAS  Google Scholar 

  14. Cater, J.C.: Ph. D. thesis., University of Glasgow, 1974

    Google Scholar 

  15. Cohn, Z.A.: The structure and function of monocytes and macrophages. Adv. Immunol. 9, 163 (1968)

    Article  PubMed  CAS  Google Scholar 

  16. Dulbecco, R., Elkington, J.: Induction of growth in resting fibroblastic cell culture by Ca2+. Proc. Nat. Acad. Sci. U.S. 72, 1584 (1975)

    Article  CAS  Google Scholar 

  17. Diamantstein, T., Ulmer, A.: The control of immune response in vitro by Ca2+. II. The Ca2+ dependent period during mitogenic stimulation. Immunol. 28, 121 (1975)

    CAS  Google Scholar 

  18. Fauve, R.M., Hevin, B.: Immunostimulation with bacterial phospholipid extracts. Proc. Nat. Acad. Sci. U.S. 71, 573 (1974)

    Article  CAS  Google Scholar 

  19. Freedman, M.H., Raff, M.C., Gomperts, B.: Induction of increased calcium uptake in mouse T lymphocytes by concanavalin A and its modulation by cyclic nucleotides. Nature 255, 378 (1975)

    Article  PubMed  CAS  Google Scholar 

  20. Gail, M.H., Boone, C.W., Thompson, C.S.: A calcium requirement for fibroblast motility and proliferation. Exp. Cell. Res. 79, 386 (1973)

    Article  PubMed  CAS  Google Scholar 

  21. Givol, D., Pecht, I., Hochman, J., Schlessinger, J., Steinberg, I. Z.: Conformational changes in the Fab and Fc of the antibody as a consequence of antigen binding. In: Progress in Immunology II. Brent, L. and Holborow, E.J. (eds.). Amsterdam: North-Holland, 1974, Vol. I, p. 39

    Google Scholar 

  22. Huxley, H.E.: Muscular contraction and cell motility. Nature 243, 445 (1973)

    Article  PubMed  CAS  Google Scholar 

  23. Jensen, J.A., Esquenazi, V.: Chemotactic stimulation by cell surface immune reactions. Nature 256, 213 (1975)

    Article  PubMed  CAS  Google Scholar 

  24. Karnovsky, M.L., Simmons, S., Glass, E.A., Shafer, A.W., D’Arcy Hart, P.: Metabolism of macrophages. In: Mononuclear phagocytes. Van Furth, R. (ed.). Oxford: Blackwell, 1970, p. 103

    Google Scholar 

  25. Mackaness, G.B.: Cellular Immunity. In: Mononuclear phagocytes. Van Furth, R. (ed.). Oxford: Blackwell, 1970, p. 461

    Google Scholar 

  26. Maino, V.C., Green, N.M., Crumpton, M.J.: The role of calcium ions in initiating transformation of lymphocytes. Nature 251, 324 (1974)

    Article  PubMed  CAS  Google Scholar 

  27. Mauel, J.: Cell-mediated immune mechanisms in bacterial and protozoal infections. In: Progress in Immunology II. Brent, L., Holborow, E.J. (eds.). Amsterdam: North-Holland, 1974, Vol. IV, p. 109

    Google Scholar 

  28. North, R.J.: Cellular kinetics associated with the development of acquired cellular resistance. J. exp. Med. 130, 299 (1969)

    Article  PubMed  CAS  Google Scholar 

  29. Van Oss, C.J., Gillman, C.F.: Phagocytosis as a surface phenomenon I. Contact angles and phagocytosis of non-opsonized bacteria. J. reticuloendothel. Soc. 12, 283 (1972)

    PubMed  Google Scholar 

  30. Van Oss, C.J., Gillman, C.F.: Phagocytosis as a surface phenomenon II. Contact angles and phagocytosis of encapsulated bacteria before and after opsonization by specific antibody and complement. J. reticuloendothel. Soc. 12, 497 (1972)

    PubMed  Google Scholar 

  31. Van Oss, C.J., Gillman, C.F.: Phagocytosis as a surface phenomenon III. Influence of C1423 on the contact angle and on the phagocytosis of sensitized encapsulated bacteria. Immunol. Commun. 2, 415 (1973)

    PubMed  Google Scholar 

  32. Van Oss, C.J., Gillman, C.F., Neumann, A.W.: Phagocytosis as a surface phenomenon IV. The minimum size and composition of antigen-antibody complexes that can become phagocytized. Immunol Commun. 3, 77 (1974)

    PubMed  Google Scholar 

  33. Pollard, T.D., Weihing, R.A.: Actin and myosin and cell movement CRC Crit. Rev. Biochem. 2, 1 (1972)

    Google Scholar 

  34. Reaven, E.P., Axline, S.G.: Subplasmalemma1 microfilaments and microtubules in resting and phagocytizing cultivated macrophages. J. Cell. Biol. 59, 12 (1973)

    Article  PubMed  CAS  Google Scholar 

  35. Russell, R.J., Mc Inroy, R.J., Wilkinson, P.C., White, R.G.: A lipid chemotactic factor from anaerobic coryneform bacteria including Corynebacterium parvum with activity for macrophages and monocytes. Immunol. 30, 935 (1976)

    CAS  Google Scholar 

  36. Ryan, G.B., Spector, W.G.: Natural selection of long lived macrophages in experimental granulomata. J. Pathol. 99, 139 (1969)

    Article  PubMed  CAS  Google Scholar 

  37. Ryan, G.B., Spector, W.G.: Macrophage turnover in inflamed connective tissue. Proc. Roy. Soc. B. 175, 269 (1970)

    Article  Google Scholar 

  38. Sbarra, A.J., Karnovsky, M.L.: The biochemical basis of phagocytosis I. Metabolic changes during the ingestion of particles by polymorphonuclear phagocytes. J. Biol. Chem. 234, 1355 (1959)

    PubMed  CAS  Google Scholar 

  39. Schatzmann, H.J.: Active calcium transport and Ca2+ activated ATPase in human red cells. Current Topics in Membranes and Transport 6, 125 (1975)

    CAS  Google Scholar 

  40. Spector, W.G., Ryan, G.B.: The mononuclear phagocyte in inflammation. In: “Mononuclear phagocytes”. Van Furth R. (ed.). Oxford: Blackwell, 1970, p. 219

    Google Scholar 

  41. Thrasher, S.G., Yoshida, T., Van Oss, C.J., Cohen, S., Rose, N.R.: Alteration of macrophage interfacial tension by supernatants of antigen-activated lymphocyte cultures. J. Immunol. 110, 321 (1973)

    PubMed  CAS  Google Scholar 

  42. Werb, Z., Conn, Z.A.: Plasma membrane synthesis in the macrophage following phagocytosis of polystyrene latex particles. J. Biol. Chem. 247, 2439 (1972)

    PubMed  CAS  Google Scholar 

  43. Whitney, R.B., Sutherland, R.M.: Requirement for calcium ions in lymphocyte transformation by phytohemagglutinin. J. Cell. Physiol. 80, 329 (1972)

    Article  PubMed  CAS  Google Scholar 

  44. Wilkinson, P.C.: Surface and cell membrane activities of leukocyte chemotactic factors. Nature 251, 58 (1974)

    Article  PubMed  CAS  Google Scholar 

  45. Wilkinson, P.C.: Leukocyte locomotion and Chemotaxis. The influence of divalent cations and cation ionophores. Exp. Cell. Res. 93, 420 (1975)

    Article  PubMed  CAS  Google Scholar 

  46. Wilkinson, P.C.: Cellular and molecular aspects of Chemotaxis of macrophages and monocytes. In: Immunobiology of the macrophage. Nelson D.S. (ed.). New York: Academic Press, 1976, p. 349

    Google Scholar 

  47. Wilkinson, P.C., Mc Kay, I.C.: The chemotactic activity of native and denatured serum albumin. Int. Archs. Allergy Appl. Immunol. 41, 237 (1971)

    Article  CAS  Google Scholar 

  48. Wilkinson, P.C., Mc Kay, I.e.: The molecular requirements for chemotactic attraction of leukocytes by proteins. Studies of proteins with synthetic side groups. Èurop. J. Immunol. 2, 570 (1972)

    Article  CAS  Google Scholar 

  49. Wilkinson, P.C., O’Neill, G.J., Mc Inroy, R.J., Cater, J.C., Roberts, J.A.: Chemotaxis of macrophages: The role of a macrophage specific cytotaxin from anaerobic corynebacteria and its relation to immunopotentiation in vivo. In: Immunopotentiation. Ciba Foundation Symposium, 18. Amsterdam. Associated Scientific Publishers, pp. 121–135, 1973

    Google Scholar 

  50. Woodin, A.M.: Staphylococcal leukocidin. In: The Staphylococci, Cohen J.O. (ed.). New York: Wiley, 1972, pp. 281.–299

    Google Scholar 

  51. Wynne, K.M., Spector, W.G., Willoughby, D.A.: Macrophage proliferation in vitro induced by exudates. Nature 253, 636 (1975)

    Article  PubMed  CAS  Google Scholar 

  52. Zurier, R.B., Hoffstein, S., Weissmann, G.: Mechanisms of lysosomal enzyme release from human leukocytes. I. Effect of cyclic nucleotides and colchicine. J. Cell. Biol. 58, 27 (1973)

    Article  PubMed  CAS  Google Scholar 

  53. Zurier, R.B., Weissmann, G., Hoffstein, S., Kammerman, S., Tai, H. H.: Mechanisms of lysosomal enzyme release from human leukocytes II. Effects of cAMP and cGMP autonomic agonists and agents which affect microtubule function. J. Clin. Invest. 53, 297 (1974)

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Wilkinson, P.C. (1976). Cell-Membrane Activation of Macrophage Function. In: Mathé, G., Florentin, I., Simmler, MC. (eds) Lymphocytes, Macrophages, and Cancer. Recent Results in Cancer Research / Fortschritte der Krebsforschung / Progrès dans les recherches sur le cancer, vol 56. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81049-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81049-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81051-0

  • Online ISBN: 978-3-642-81049-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics