Skip to main content

Abstract

Microgravity monitoring involves the measurement of small changes with time in the value of gravity at a network of stations with respect to a fixed base. Microgravity is becoming increasingly recognised as a valuable tool for mapping out the subsurface mass redistributions that are associated with volcanic activity. It is essential that relative elevation data are obtained at the same time as gravity data for an unambiguous interpretation of results. By combining these data sets, far more information is available than using either method alone. In recent decades systematic microgravity studies over some 20 active volcanoes in Central America, Iceland, Italy, Japan, Papua New Guinea and the USA have provided valuable data on the subsurface mass redistribution associated with eruptions. I consider here the feasibility and suitability of microgravity surveys in a range of tectonic settings. Examples from a variety of volcanoes in varying states of activity reveal that while basaltic rift-type volcanoes undergo elastic ground deformation prior to eruption, they rarely exhibit large subsurface density changes. Large caldera structures in a state of unrest exhibit gravity and height variations that closely follow the relationship expected for an elastic medium. Deep mass increases and decreases have been observed at calderas, but they have not been the precursors to eruptive activity. On the other hand, data from several andesitic stratocones reveal gravity changes that are much larger than can be accounted for by the observed height changes associated with a change in activity. Thus, while combined gravity and height monitoring may be useful at most volcanoes, it has proved to be particularly fruitful at explosive, andesitic constructs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anert F, Smith RB Klingele E (1991) Temporal variations in gravity across the Yellowstone caldera. Proc Chapman Conf on Time dependent Positioning: modelling crustal deformation, Anapolis, pp 14

    Google Scholar 

  • Berrino G (1994) Absolute gravity observations and gradiometry at Centuripe and Serra la Nave (Mt. Etna) stations. In: Volcanic deformation and tidal gravity effects at Mount Etna, Sicily. Interim report for EC SCIENCE Project no ERB40002PL900491 (90400491). The Open University, UK

    Google Scholar 

  • Berrino G, Corrado G, Luongo G, Toro B (1984) Ground deformation and gravity changes accompanying the 1982 Pozzuoli uplift. Bull Volcanol 47–2: 187–200

    Article  Google Scholar 

  • Berrino G, Rymer H, Brown GC, Corrado G (1992) Gravity-height correlations for unrest at calderas. J Volcanol Geotherm. Res 53: 11–26

    Article  Google Scholar 

  • Bjornsson A, Johnsen G, Sigurdsson S, Thorbergsson G, Tryggvason E (1979) Rifting of the plate boundary in north Iceland 1975–1987. J Geophys Res 84: 3029–3038

    Article  Google Scholar 

  • Blake S, Ivey, GN (1986) Density and viscosity gradients in zoned magma chambers and their influence on withdrawal dynamics. J Volcanol Geotherm Res.30: 210–230

    Article  Google Scholar 

  • Brown GC, Rymer H, Thorpe R S (1987) Gravity fields and the interpretation of volcanic structure. Earth Planet Sci Lett. 82 (3,4): 323–334

    Article  Google Scholar 

  • Brown GC, Rymer H, Dowden J, Kapadia P, Stevenson D, Barquero J, Morales L D (1989) Energy budget analysis for Poas crater lake — implications for predicting volcanoc activity. Nature 339: 370–373

    Article  Google Scholar 

  • Brown G.C, Rymer H, Stevenson D (1991) Volcano monitoring by microgravity and energy budget analysis. J Geol Soc (Lond) 148: 585–593

    Article  Google Scholar 

  • Dzurisin D, Anderson LA, Eaton GP, Koyanagi RY, Lipman PW, Lockwood JP, Okamura RT, Puniwai GS, Sako MK, Yamashita KM (1980) Geophysical observations of Kilauea volcano, Hawaii, 2. Constraints on the magma supply during November 1975-September 1977. J Volcanol Geotherm Res 7: 241–269

    Article  Google Scholar 

  • Eggers AA (1983) Temporal gravity and elevation changes at Pacaya volcano, Guatemala J Volcanol Geotherm Res. 19: 223–227

    Article  Google Scholar 

  • Eggers AA (1987) Residual gravity changes and eruption magnitudes. J Volcanol Geotherm Res.33: 201–216

    Article  Google Scholar 

  • Ewart JA, Voight B, Bjornsson A (1990) Dynamics of Krafla caldera, north Iceland: 1975–1985. In: Ryan MP (ed)Magma transport and Storage John Wiley, New York, pp 225–276

    Google Scholar 

  • Fernandez M, Rymer H, Brown G, Hernandez E (1992) La desecacion del lago caliente del Volcan Poas (Costa Rica) a partir de 1986 y el ciclo eruptivo de cenizas en 1989: evidencias de un ascenso magmatico. Mem 7th Latinamerican Congr Geology., Madrid. 5 pp

    Google Scholar 

  • Hagiwara Y (1977) Gravity changes associated with seismic activity. In: Kisslinger C, Suzuki Z (eds) Earthquake Precursors Adv Earth Planet Sci 2: 137–146

    Google Scholar 

  • Harrison JC, Sato T (1984) Implimentation of electrostatic feedback with a LaCoste and Romberg model g gravity meter. J Geophys Res 89: 7957–7961

    Article  Google Scholar 

  • Huppert HE, Sparks RSJ, Turner JS (1982) Effects of volatiles on mixing in calc-alkaline magma systems. Nature 297: 554–557

    Article  Google Scholar 

  • Iida K, Hayakawa M, Katayose K (1952) Gravity survey of Mihara volcano, Ooshima Island and changes in gravity caused by eruption. Geol Surv Jpn Rep 152: 1–28 (in Japanese with English summary)

    Google Scholar 

  • Ishihara K (1990) Pressure sources and induced ground deformation associated with explosive eruptions at an andrsite volcano: Sakurajima volcano, Japan. In: MP Ryan (ed) Magma Transport and Storage. John Wiley, New York, pp 335–356

    Google Scholar 

  • Jachens C, Eaton GP (1980) Geophysical observations of Kilauea volcano, Hawaii. 1. Temporal gravity variations related to the 29th November 1975 earthquake and associated summit collapse. J Volcanol Geotherm Res 7: 225–240

    Article  Google Scholar 

  • Jachens RC, Roberts CW (1985) Temporal and areal gravity investigations at Long Valley Caldera, California. J Geophys Res. 90: 11210–11218

    Article  Google Scholar 

  • Jachens RC, Spydell DR, Pitts GS, Dzurisn D, Roberts CW (1981) Temporal gravity variations at Mount St. Helens, March-May 1980. In: Lipman PW, Mullineaux DR (eds) The 1980 Eruptions of Mount St. Helens, Washington. U S Geol Surv Prof Pap Washington 1250: 175–182

    Google Scholar 

  • Johnsen GV, Bjornsson A, Sigurdsson S (1980) Gravity and elevation changes caused by magma movement beneath Krafla caldera, northeast Iceland. J Geophys 47: 132–140

    Google Scholar 

  • Johnson DJ (1987) Elastic and inelastic magma storage at Kilauea volcano. US Geol Surv Prof Pap Washington 1350: 1297–1306

    Google Scholar 

  • Kanngieser E (1983) Vertical component of ground defermation in north Iceland. Ann Geophys 1: 321–328

    Google Scholar 

  • Malone SD, Frank D (1975) Increased heat emission from Mount Baker, Washington. Trans.Am Geophys Union.56: 679–685

    Article  Google Scholar 

  • McKee CO, Wallace DA, Almond RA, Talai B (1981) Fatal hydro-eruption of Karkar volcano in 1979: development of a maar-like crater. In: R.W. Johnson (ed) Cooke-Ravien Volume of Volcanological Papers. Geol Surv Papua New Guinea, Mem 10: 63–84

    Google Scholar 

  • McKee C, Mori J, Talai B (1987) Microgravity changes and ground deformation at Rabaul Caldera, 1973–1985. Rabaul Volcanological Observatory Report 87/29, 52 pp

    Google Scholar 

  • Mogi K (1958) Relations between the eruptions of various volcanoes and the deformation of the ground surfaces around them. Bull Earthq Res Inst 36: 99–134

    Google Scholar 

  • Nishimura S, Abe E, Katsura K (1988) The scular changes of gravity and its gradient around Sakurajma, Southern part of Kyushu. Proc Kagoshima Int Conf on Volcanoes. Kagoshima pp 258–264

    Google Scholar 

  • Okubo S, Watanabe H (1989) Gravity change caused by a fissure eruption. Geophys Res Lett 16: 445–448

    Article  Google Scholar 

  • Rundle JB (1988) The geophysics of a restless caldera — Long Valley, California. Annu Rev Earth Planet Sci 16: 251–271

    Article  Google Scholar 

  • Rymer H (1989) A contribution to precision microgravity data analysis using LaCoste and Romberg gravity meters. Geophys J 97: 311–322.

    Article  Google Scholar 

  • Rymer H (1994) Microgravity changes as a precursor to volcanic activity. J Volcanol Geotherm Res 61:311–328

    Article  Google Scholar 

  • Rymer H, Brown GC (1984) Periodic gravity changes at Poás volcano, Costa Rica. Nature 311: 243–245

    Article  Google Scholar 

  • Rymer H, Brown GC (1986) Gravity fields and the interpretation of volcanic structures: geological discrimination and temporal evolution. J Volcanol Geotherm Res 27: 229–254

    Article  Google Scholar 

  • Rymer H, Brown GC (1987) Causes of microgravity change at Poás volcano, Costa Rica: An active but non-erupting system. Bull Volcanol 49: 389–398

    Article  Google Scholar 

  • Rymer H, Brown GC (1989) Gravity changes as a precursor to volcanic eruption at Póas volcano, Costa Rica. Nature 342: 902–905

    Article  Google Scholar 

  • Rymer H, Tryggvason E (1993) Gravity and elevation changes at Askja, Iceland. Bull Volcanol. 55: 362–371

    Article  Google Scholar 

  • Rymer H, Murray JB, Brown GC, Ferrucci F, McGuire WJ (1993) Eruption mechanisms and precursors at Mt Etna 1989–1992. Nature 361: 439–441

    Article  Google Scholar 

  • Rymer H, Brown GC, Ferrucci F, Murray JB (1994) Dyke intrusion mechanisms on Etna 199–1993 and microgravity precursors to eruption. Acta Vulcanol 4: 109–114

    Google Scholar 

  • Rymer H, Locke, CA, Murray, JB (1995) Magma movements in Etna volcano associated with the major 1991–1993 lava eruption: evidence from gravity and deformation. B Volcanol 57: (in the press)

    Google Scholar 

  • Sanderson TJO (1982) Direct gravimetric detection of magma movements at Mount Etna. Nature 297: 487–490

    Article  Google Scholar 

  • Sanderson TJO, Berrino G, Corrado G, Grimaldi M (1983) Ground deformation and gravity changes accompanying the March 1981 eruption of Mt. Etna. J Volcanol Geotherm Res 16: 299–315

    Article  Google Scholar 

  • Savage JC (1984) Local gravity anomalies produced by dislocation sources. J Geophys Res 89: 1945–1952

    Article  Google Scholar 

  • Savage JC, Clark MM (1982) Magmatic resurgence in Long Valley caldera, California: possible cause of the 1980 Mommoty Lake earthquakes. Science 217: 531–533

    Article  Google Scholar 

  • Sigurdsson H, Sparks RSJ (1981) Petrology of rhyolitic and mixed magma ejecta from the 1875 eruption of Askja, Iceland. J Petrol 22: 41–84

    Google Scholar 

  • Smith RB, Reilinger RE, Meertens CM, Hollis JR, Holdahl SR, Dzurisin D, Gross WK, Klingele EE (1989) What’s moving at Yellowstone? EOS 70: 113–125

    Article  Google Scholar 

  • Torge W (1981) Gravity and height variations connected with the current rifting episode in northern Iceland. Tectonophysics 71: 227–240

    Article  Google Scholar 

  • Torge W, Kanngieser E (1980) Gravity and height variations during the present rifting episode in northern Iceland. J Geophys 47: 125–131

    Google Scholar 

  • Tryggvason E (1986) Multiple magma reservoirs in a rift zone volcano: ground deformation during a Krafla eruption. J Volcanol Geotherm Res 28: 1–44

    Article  Google Scholar 

  • Yokoyama I (1972) Gravimetric, magnetic and electrical methods. In: The surveillance and prediction of volcanic activity. UNESCO, Paris

    Google Scholar 

  • Yokoyama I (1978) Predictions of volcanic eruptions by means of geodetic, geomagnetic, geo-electric and geothermic observations. Bull Volcanol Soc Jpn 23: 19–32 (in Japanese with English Abstr)

    Google Scholar 

  • Yokoyama I (1989) Microgravity and height changes caused by volcanic activity: four Japanese examples. Bull Volcanol 51: 333–345

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rymer, H. (1996). Microgravity Monitoring. In: Monitoring and Mitigation of Volcano Hazards. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80087-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80087-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80089-4

  • Online ISBN: 978-3-642-80087-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics