Skip to main content

Hazards of Large Volcanic Debris Avalanches and Associated Eruptive Phenomena

  • Chapter
Monitoring and Mitigation of Volcano Hazards

Abstract

Slope failures resulting from structural instability of volcanoes produce extremely mobile debris avalanches that can travel long distances beyond the flanks of volcanoes at high velocities. Large mass movements occur at volcanic constructs ranging from lava dome complexes to massive shield volcanoes, creating horseshoe-shaped reentrants into the edifice that can attain caldera-sized dimensions. More than 20 major slope failures have occurred globally during the past 500 years, a rate exceeding that of caldera collapse. Debris-avalanche deposits are the dominant volcaniclastic component at some volcanoes. Their widespread occurrence in a variety of tectonic settings suggests that slope failure may be the dominant catastrophic edifice- modifying process.

Debris avalanches typically form hummocky deposits of largely unsorted and unstratified angular-to-subangular debris, although deposit surface morphologies and internal structures vary. Partial preservation of primary edifice stratigraphy indicates dominantly laminar, nonturbulent flow. Pervasive shear is restricted to the base of avalanches, although deformation and shear can occur throughout. Flow mechanisms and deposit morphologies vary with water content. Debris avalanches range from largely dry mass movements in which air is the dominant interstitial component to flows that, with increasing water content, partially transform into lahars.

Hazards derive from the avalanches themselves, from associated eruptive activity ranging from phreatic explosions to catastrophic lateral blasts, as well as from associated lahars and tsunamis that extend damage well beyond the avalanche deposit. The lateral blasts are related to the slope failures, which truncate hydrothermal-magmatic systems and deflect resultant explosions; their occurrence appears related to the relative timing of collapse and explosions. Hazard maps may be constructed by using empirical ratios of emplacement parameters or by theoretical dynamic modeling. Precursors to edifice failure vary widely, and slope failure may occur in the absence of eruptive activity. Patterns of deformation that typically precede nonvolcanic slope failures may be short-circuited by volcanic explosions or earthquakes, making prediction difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguila L, Newhall CG, Miller CD, Listanco E (1986) Reconnaissance of a large volcanic debris avalanche at Iriga volcano, Philippines. Philipp J Volcanol 3: 54–72

    Google Scholar 

  • Aida I (1975) Numerical experiments of the tsunami associated with the collapse of Mt. Mae-yama in 1792. J Seismol Soc Jpn (Zisin) 28: 449–460 (in Japanese with English Abstr)

    Google Scholar 

  • Ando S, Yamagishi H (1975) Hill topography on the nuee ardente deposits on the Shikaribetsu volcano. Bull Volcanol Soc Jpn 20: 31–36 (in Japanese with English Abstr)

    Google Scholar 

  • Begét JE, Kienle J (1992) Cyclic formation of debris avalanches at Mt. St. Augustine volcano, Alaska. Nature 356: 701–704

    Google Scholar 

  • Belousov AB (1995) The Shiveluch volcanic eruption of 12 November 1964 — explosive eruption provoked by failure of the edifice. In: Ida Y, Voight B (eds) Models of magnatic processes and volcanic eruptions. J Volcanol Geotherm Res 66: 357–365

    Google Scholar 

  • Blong RJ (1984) Volcanic hazards. Academic Press, Sydney, 424 pp

    Google Scholar 

  • Bogoyavlenskaya GE, Braitseva OA, Melekestsev IV, Kiriyanov VY, Miller CD (1985) Catastrophic eruptions of the directed-blast type at Mount St. Helens, Bezymianny and Shiveluch volcanoes. J Geodynam 3: 189–218

    Google Scholar 

  • Borgia A, Burr J, Montero W, Morales LD, Alvarado GE (1990) Fault propagation folds induced by gravitational failure and slumping of the central Costa Rica volcanic range: implications for large terrestrial and Martian volcanic edifices. J Geophys Res 95: 14,357–14,382

    Google Scholar 

  • Boudon G, Semet MP, Vincent PM (1984) Flank failure-directed blast eruption at Soufriere Guadeloupe, French West Indies: a 3,000-yr-old Mt. St. Helens? Geology 12: 350–353

    Google Scholar 

  • Campbell CS (1989) Self-lubrication for long runout landslides. J Geol 97: 653–665

    Google Scholar 

  • Carracedo JC (1994) The Canary Islands: an example of structural control on the growth of large oceanic-island volcanoes. J Volcanol Geotherm Res 60: 225–241

    Google Scholar 

  • Carrasco-Núñez G, Vallance JW, Rose WI (1993) A voluminous avalanche-induced lahar from Citlatepetl volcano, Mexico: implications for hazard assessment. J Volcanol Geotherm Res 59: 35–46

    Google Scholar 

  • Casadevall TJ, Pardyanto L, Abas H, Tulus (1989) The 1988 eruption of Bandai Api, Maluku, Indonesia. Geol Indonesia 12: 603–635

    Google Scholar 

  • Chadwick WW, De Roy T, Carrasco A (1991) The September 1988 intracaldera avalanche and eruption at Fernandina volcano, Galapagos Islands. Bull Volcanol 53: 276–286

    Google Scholar 

  • Clague DA, Denlinger RP (1994) The role of olivine cumulates in destabilizing the flanks of Hawaiian volcanoes. Bull Volcanol 56: 425–434

    Google Scholar 

  • Conway FM, Vallance JW, Rose WI, Johns GW, Paniagua S (1992) Cerro Quemado, Guatemala: the volcanic history and hazards of an exogenous volcanic dome complex. J Volcanol Geotherm Res 52: 303–323

    Google Scholar 

  • Crandell DR (1989) Gigantic debris avalanche of Pleistocene age from ancestral Mount Shasta volcano, California, and debris-avalanche hazard zonation. US Geol Surv Bull 1861, 32 pp

    Google Scholar 

  • Crandell DR, Hoblitt RP (1986) Lateral blasts at Mount St. Helens and hazard zonation. Bull Volcanol 48: 27–37

    Google Scholar 

  • Crandell DR, Mullineaux DR, Sigafoos RS, Rubin M (1974) Chaos Crags eruptions and rockfall-avalanches, Lassen Volcanic National Park, California. US Geol Surv J Res 2: 49–59

    Google Scholar 

  • Crandell DR, Miller CD, Glicken HX, Christiansen RL, Newhall CG (1984) Catastrophic debris avalanche from ancestral Mount Shasta volcano, California. Geology 12: 143–146

    Google Scholar 

  • Criswell CW (1987) Chronology and pyroclastic stratigraphy of the May 18, 1980 eruption of Mount St. Helens, Washington. J Geophys Res 92: 10,237–10,266

    Google Scholar 

  • Davies TRH (1982) Spreading of rock avalanche debris by mechanical fluidization. Rock Mechanics 15: 9–24

    Google Scholar 

  • de Silva SL, Davidson JP, Croudace IW, Escobar A (1993) Volcanological and petrological evolution of Volcan Tata Sabaya, SW Bolivia. J Volcanol Geotherm Res 55: 305–335

    Google Scholar 

  • Druitt TH (1992) Emplacement of the 18 May 1980 lateral blast deposit ENE of Mount St. Helens, Washington. Bull Volcanol 54: 554–572

    Google Scholar 

  • Endo K, Sumita M, Machida M, Furuichi M (1989) The 1984 collapse and debris avalanche deposit of Ontake volcano, central Japan. In: Latter JH (ed) Volcanic hazards. Springer, Berlin Heidelberg New York, pp 210–229

    Google Scholar 

  • Eppler DB, Fink J, Fletcher R (1987) Rheologic properties and kinematics of emplacement of the Chaos Jumbles rockfall avalanche, Lassen Volcanic National Park, California. J Geophys Res 92: 3623–3633

    Google Scholar 

  • Erismann TH (1979) Mechanisms of large landslides. Rock Mechanics 12: 15–46

    Google Scholar 

  • Fairchild LH (1987) The importance of lahar initiation processes. Geol Soc Am Rev Eng Geol 7: 51–61

    Google Scholar 

  • Fisher RV (1990) Transport and deposition of a pyroclastic surge across an area of high relief: the 18 May 1980 eruption of Mount St. Helens, Washington. Geol Soc Am Bull 102: 1038–1054

    Google Scholar 

  • Fisher RV, Glicken H, Hoblitt RP (1987) May 18, 1980, Mount St. Helens deposits in South Coldwater Creek, Washington. J Geophys Res 92: 10,267 – 10,283

    Google Scholar 

  • Francis PW (1985) The origin of the 1883 Krakatau tsunamis. J Volcanol Geotherm Res 25: 349–364

    Google Scholar 

  • Francis PW, Wells GL (1988) Landsat Thematic Mapper observations of debris avalanche deposits in the Central Andes. Bull Volcanol 50: 258–278

    Google Scholar 

  • Francis PW, Gardeweg M, Ramirez CF, Rothery DA (1985) Catastrophic debris avalanche deposit of Socompa volcano, northern Chile. Geology 13: 600–603

    Google Scholar 

  • Frank D, Meier MF, Swanson DA (1977) Assessment of increased thermal activity at Mount Baker, Washington, March 1975-March 1976. US Geol Surv Prof Pap 1022-A: 1–49

    Google Scholar 

  • Glicken H (1986) Rockslide — debris avalanche of May 18, 1980, Mount St. Helens Volcano. PhD Dissertation, Univ Calif Santa Barbara, 303 pp (unpublished)

    Google Scholar 

  • Glicken H (1991) Sedimentary architecture of large volcanic-debris avalanches. In: Fisher RV, Smith GA (eds) Sedimentation in volcanic settings. SEPM Spec Publ 45: 99–106

    Google Scholar 

  • Glicken H, Nakamura Y (1988) Restudy of the 1888 eruption of Bandai volcano, Japan. Proc Kagoshima Internat Conf on Volcanoes, Kagoshima, Japan, pp 392–395

    Google Scholar 

  • Glicken H, Meyer W, Sabol M (1989) Geology and ground-water hydrology of Spirit Lake blockage, Mount St. Helens, Washington, with implications for lake retention. US Geol Surv Bull 1789: 1–33

    Google Scholar 

  • Gorshkov GS (1959) Gigantic eruption of the volcano Bezymianny. Bull Volcanol 21: 77–109

    Google Scholar 

  • Gorshkov GS (1970) Volcanism and the upper mantle: investigations in the Kurile Island Arc. Plenum Press, New York, 385 pp

    Google Scholar 

  • Gorshkov GS, Dubik YM (1970) Gigantic directed blast at Shiveluch volcano (Kamchatka). Bull Volcanol 34: 262–288

    Google Scholar 

  • Grange LI (1931) Conical hills on Egmont and Ruapehu volcanoes. N Z J Sci Technol 13: 376–384

    Google Scholar 

  • Griggs RF (1920) The great Mageik landslide. Ohio J Sci 20: 325–354

    Google Scholar 

  • Habib P (1975) Production of gaseous pore pressures during rockslides. Rock Mechanics 7: 193 – 197

    Google Scholar 

  • Hackett WR, Houghton BF (1989) A facies model for a Quaternary andesitic composite volcano: Ruapehu, New Zealand. Bull Volcanol 51: 51–68

    Google Scholar 

  • Harbitz C (1991) Numerical simulation of slide generated water waves. Int J Tsunami Soc 9: 15–22

    Google Scholar 

  • Hayashi JN, Self S (1992) A comparison of pyroclastic flow and debris avalanche mobility. J Geophys Res 97: 9063–9071

    Google Scholar 

  • Hoblitt RP, Miller CD, Vallance JW (1981) Origin and stratigraphy of the deposit produced by the May 18 directed blast. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St. Helens, Washington. US Geol Surv Prof Pap 1250: 401–420

    Google Scholar 

  • Holcomb RT, Searle RC (1991) Large landslides from oceanic volcanoes. Mar Geotechnol 10: 19 – 32

    Google Scholar 

  • Hsü K (1975) Catastrophic debris streams (sturzstroms) generated by rockfalls. Geol Soc Am Bull 86: 129–140

    Google Scholar 

  • Ida Y, Voight B (eds) (1995) Models of magnatic processes and volcanic eruptions. J Volcanol Geotherm Res 66: 1–126

    Google Scholar 

  • Incer J (1983) La noche cuando revento el Mombacho. Prensa Literario, Oct 16: 8–9

    Google Scholar 

  • Inokuchi T (1988) Gigantic landslides and debris avalanches on volcanoes in Japan — case studies on Bandai, Chokai, and Iwate Volcanoes. Rep Nat Res Center Disaster Prevention 41: 163–275 (in Japanese with English Abstr)

    Google Scholar 

  • Janda RJ, Scott KM, Nolan KM, Martinson HA (1981) Lahar movement, effects, and deposits. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St. Helens, Washington. US Geol Surv Prof Pap 1250: 461–478

    Google Scholar 

  • Johnson C(1994) Modeling the 105 ka Lanai tsunami. Int J Tsunami Soc, (in press)

    Google Scholar 

  • Johnson RW (1987) 1888 slope failure of Ritter Volcano: results from a bathymetrie survey, and examples from other Papua New Guinea volcanoes. Bull Volcanol 49: 669–679

    Google Scholar 

  • Katayama N (1974) Old records of natural phenomena concerning the “Shimabara Catastrophe”. Sci Rep Shimabara Volcano Observ, Fac Sci Kyushu Univ 9: 1–45 (in Japanese with English Abstr)

    Google Scholar 

  • Katsui Y, Yamamoto M (1981) The 1741–1742 activity of Oshima-Oshima volcano, north Japan. J Fac Sci, Hokkaido Univ, Ser 4 19: 527–536

    Google Scholar 

  • Katsui Y, Yokoyama I, Fujita T, Ehara S (1975) Komagatake. Report of the volcanoes in Hokkaido, part 4. Committee for Prevention of the Natural Disasters of Hokkaido, Sapporo, 194 pp (in Japanese)

    Google Scholar 

  • Kent PE (1966) The transport mechanism in catastrophic rock falls. J Geol 74: 79–83

    Google Scholar 

  • Kieffer SW (1981) Fluid dynamics of the May 18 blast at Mount St. Helens. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St. Helens, Washington. US Geol Surv Prof Pap 1250: 379–400

    Google Scholar 

  • Kieffer SW, Sturtevant B (1988) Erosional furrows formed during the lateral blast at Mount St. Helens, May 18, 1980. J Geophys Res 93: 14,793–14,816

    Google Scholar 

  • Kienle J, Kowalik Z, Murty TS (1987) Tsunamis generated by eruptions from Mount St. Augustine volcano, Alaska. Science 236: 1442–1447

    Google Scholar 

  • Komorowski J-C, Glicken HX, Sheridan MF (1991) Secondary electron imagery of microcracks and hackly fracture surfaces in sand-size clasts from the 1980 Mount St. Helens debrisavalanche deposit: implications for particle- particle interactions. Geology 19: 261–264

    Google Scholar 

  • Kowalik Z, Murty TS (1992) Relevance of bathymetry for tsunami runup modeling. Mar Geodesy 14: 273–283

    Google Scholar 

  • Lipman PW (1976) Caldera-collapse breccias in the western San Juan Mountains, Colorado. Geol Soc Am Bull 87: 1397–1410

    Google Scholar 

  • Lopez DL, Williams SN (1993) Catastrophic volcanic collapse: relation to hydrothermal processes. Science 260: 1794–1796

    Google Scholar 

  • MacLeod N (1989) Sector-failure eruptions in Indonesian volcanoes. Geol Indonesia 12: 563–601

    Google Scholar 

  • Major JJ, Voight B (1986) Sedimentology and clast orientations of the 18 May 1980 southwestflank lahars, Mount St. Helens, Washington. J Sediment Petrol 56: 691–705

    Google Scholar 

  • Malin MC, Sheridan MF (1982) Computer-assisted mapping of pyroclastic surges. Science 217: 637–640

    Google Scholar 

  • Matsuda T, Ariyama T (1985) Debris avalanche deposits of Ontake volcano, caused by the 1984 western Nagano Prefecture earthquake — on the debris- spray zone. Bull Earthq Res Inst Univ Tokyo 60: 281–316 (in Japanese with English Abstr)

    Google Scholar 

  • McEwen AS (1989) Mobility of large rock avalanches: evidence from Valles Marineris, Mars. Geology 17: 1111–1114

    Google Scholar 

  • McEwen AS, Malin MC (1989) Dynamics of Mount St. Helens 1980 pyroclastic flows, rockslideavalanche, lahars and blast. J Volcanol Geotherm Res 37: 205–231

    Google Scholar 

  • Melekestsev IV, Braitseva OA (1984) Gigantic rockslide avalanches on volcanoes. Volcanol Seismol 1984(4): 14–23 (English translation in Volcanol Seismol 6: 495–508, 1988)

    Google Scholar 

  • Melekestsev IV, Braitseva OA, Ponomareva VV, Sulerzhitsky LD (1990) Ages and dynamics of development of the active volcanoes of the Kurile-Kamchatka region. Int Geol Rev 32: 436 – 448

    Google Scholar 

  • Melosh HJ (1979) Acoustic fluidization: a new geologic process? J Geophys Res 84: 7513–7520

    Google Scholar 

  • Mimura K, Kawachi S, Fujimoto U, Taneichi M, Hyuga T, Ichikawa S, Koizumi M (1982) Debris avalanche hills and their natural remnant magnetization — Nirasaki debris avalanche, central Japan. J Geol Soc Jpn 88: 653–663 (in Japanese with English Abstr)

    Google Scholar 

  • Mizuno Y (1964) Landforms associated with volcanic debris flows at the foot of Zao volcano. Hirosaki Univ Fac Educ Bull 13: 23–32 (in Japanese)

    Google Scholar 

  • Moore JG (1964) Giant submarine landslides on the Hawaiian Ridge. US Geol Surv Prof Pap 501- D: 95–98

    Google Scholar 

  • Moore JG, Sisson TW (1981) Deposits and effects of the May 18 pyroclastic surge. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St. Helens, Washington. US Geol Surv Prof Pap 1250:421–438

    Google Scholar 

  • Moore JG, Clague DA, Holcomb RT, Lipman PW, Normark WR, Torresan ME (1989) Prodigious submarine landslides on the Hawaiian Ridge. J Geophys Res 94: 17,465–17,484

    Google Scholar 

  • Moore JG, Normark WR, Holcomb RT (1994) Giant Hawaiian landslides. Annu Rev Earth Planet Sci 22: 119–144

    Google Scholar 

  • Moriya I (1980) “Bandaian Eruption” and landforms associated with it. Collection of articles in memory of retirement of Prof. K. Nishimura from Tohoku Univ. Fac Sci Tohoku Univ, Sendai, pp 214–219 (in Japanese with English Abstr)

    Google Scholar 

  • Moriya I (1988) Geomorphological development of Bandai volcano. J Geogr 97: 293–300 (in Japanese)

    Google Scholar 

  • Murai I (1961) A study of the textural characteristics of pyroclastic flow deposits in Japan. Bull Earthq Res Inst Tokyo Univ 39: 133–248

    Google Scholar 

  • Nakamura Y (1978) Geology and petrology of Bandai and Nekoma volcanoes. Tohoku Univ Sci Rep Ser 3, 14: 67–119

    Google Scholar 

  • Neumann van Padang M (1929) De Noordelijke doorbraak in den Papandajan kraterwand. De Mijningenieur 10(3): 55–57

    Google Scholar 

  • Neumann van Padang M (1939) Uber die vielen tausend Hugel in westlichen Vorlande des Raoeng- Vulkans (Ostjava). Ing Ned Indies 6(4): 35–41

    Google Scholar 

  • Newhall CG, Self S (1982) The Volcanic Explosivity Index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87: 1231–1238

    Google Scholar 

  • Palmer BA, Alloway BV, Neall VE (1991) Volcanic-debris-avalanche deposits in New Zealand — lithofacies organization in unconfined, wet-avalanche flows. In: Fisher RV, Smith GA (eds) Sedimentation in volcanic settings, SEPM Spec Publ 45: 89–98

    Google Scholar 

  • Pelinovsky EN, Mazova RKH (1992) Exact analytical solutions of nonlinear problems of tsunami wave runup on slopes with different profiles. Nat Hazards 6: 227–249

    Google Scholar 

  • Perret FA (1924) The Vesuvius eruption of 1906 study of a volcanic cycle. Carnegie Inst Wash Publ 339, 151 pp

    Google Scholar 

  • Pierson PC (1985) Initiation and flow behavior of the 1980 Pine Creek and Muddy River lahars, Mount St. Helens, Washington. Geol Soc Am Bull 96: 1056–1069

    Google Scholar 

  • Reid ME (1994) Transient thermal pressurization in hydrothermal systems: a cause of large-scale edifice collapse at volcanoes. Geol Soc Am, Abstr Progr 26: 376

    Google Scholar 

  • Robin C, Boudai C (1987) A gigantic Bezymiannytype event at the beginning of modern Popocatepetl. J Volcanol Geotherm Res 31: 115–130

    Google Scholar 

  • Roobol MJ, Wright JV, Smith AL (1983) Calderas or gravity-slide structures in the Lesser Antilles island arc? J Volcanol Geotherm Res 19: 121–134

    Google Scholar 

  • Rowland SK, Munro DC (1992) The caldera of Volcan Fernandina: a remote sensing study of its structure and recent activity. Bull Volcanol 55: 97–109

    Google Scholar 

  • Scheidegger AE (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mechanics 5: 236–257

    Google Scholar 

  • Schuster RL, Crandell DR (1984) Catastrophic debris avalanches from volcanoes. Proc IV Int Symp Landslides, Toronto, 1984 1: 567–572

    Google Scholar 

  • Scott KM (1989) Magnitude and frequency of lahars and lahar-runout flows in the Toutle-Cowlitz River system. US Geol Surv Prof Pap 1447-A: 1–74

    Google Scholar 

  • Scott KM, Pringle PT, Vallance JW (1995) Sedimentology, behavior, and hazards of debris flows at Mount Rainier, Washington. US Geol Surv Prof Pap 1547, 56 pp

    Google Scholar 

  • Sekiya S, Kikuchi Y (1889) The eruption of Bandai-san. Tokyo Imp Univ Coll Sci J 3(2): 91–172

    Google Scholar 

  • Shreve RL (1968) The Blackhawk landslide. Geol Soc Am Spec Pap 108, 47 p

    Google Scholar 

  • Siebe C, Komorowski J-C, Sheridan MF (1992) Morphology and emplacement of an unusual debris-avalanche deposit at Jocotitlan volcano, central Mexico. Bull Volcanol 54: 573–589

    Google Scholar 

  • Siebe C, Abrams M, Sheridan MF (1993) Two different types of debris avalanche deposits at Las Derrumbadas rhyolite domes, east-central Mexico. IAVCEI Canberra Meeting Abstr, p 100

    Google Scholar 

  • Siebert L (1984) Large volcanic debris avalanches: characteristics of source areas, deposits, and associated eruptions. J Volcanol Geotherm Res 22: 163–197

    Google Scholar 

  • Siebert L, Glicken H, Ui T (1987) Volcanic hazards from Bezymianny- and Bandai-type eruptions. Bull Volcanol 49: 435–459

    Google Scholar 

  • Siebert L, Glicken H, Kienle J (1989) Debris avalanches and lateral blasts at Mount St. Augustine volcano, Alaska. Nat Geogr Res 5: 232–249

    Google Scholar 

  • Siebert L, Begét JE, Glicken H (1995) The 1883 and late prehistoric eruptions of Augustine volcano, Alaska. In: Ida Y, Voight B (eds) Models of magnatic processes and volcanic eruptions. J Volcanol Geotherm Res 66: 367–395

    Google Scholar 

  • Sousa J, Voight B (1991) Continuum simulation of flow failures. Geotechnique 41: 515–538

    Google Scholar 

  • Sousa J, Voight B (1995) Multiple-pulsed debris avalanche emplacement at Mount St. Helens in 1980: evidence from numerical continuum flow simulations. In: Ida Y, Voight B (eds) Models of magnatic processes and volcanic eruptions. J Volcanol Geotherm Res 66: 227–250

    Google Scholar 

  • Stoopes GR, Sheridan MF (1992) Giant debris avalanches from the Colima Volcanic Complex, Mexico: implications for long-runout landslides (> 100 km) and hazard assessment. Geology 20: 299–302

    Google Scholar 

  • Suzuki T (1966) Geomorphology of Iizuna volcano and its adjacent areas, central Japan. Bull Fac Sci Eng Chuo Univ 9: 194–217

    Google Scholar 

  • Swanson DA, Duffield WA, Jackson DB, Peterson DW (1979) Chronological narrative of the 1969–1971 Mauna Ulu eruption of Kilauea volcano, Hawaii. US Geol Surv Prof Pap 1056, 55 PP

    Google Scholar 

  • Thouret J-C, Salinas R, Murcia A (1990) Eruption and mass-wasting-induced processes during the late Holocene destructive phase of Nevado del Ruiz volcano, Colombia. In: Williams SN (ed) Nevado del Ruiz Volcano, Colombia, I. J Volcanol Geotherm Res 41: 203–224

    Google Scholar 

  • Ui T (1983) Volcanic dry avalanche deposits — identification and comparison with nonvolcanic debris stream deposits. In: Aramaki S, Kushiro I (eds) Arc volcanism. J Volcanol Geotherm Res 18: 135–150

    Google Scholar 

  • Ui T (1987) Discrimination between debris avalanches and other volcaniclastic deposits. In: Latter JH (ed) Volcanic Hazards. Springer, Berlin Heidelberg New York, pp 201–209

    Google Scholar 

  • Ui T, Fujiwara H (1993) Debris avalanche database. In: Aramaki S (ed) Scale and characteristics of volcanic disasters, prediction of natural disasters and prevention measures for society, Natural Disaster Sci Coordination Res Group, Ministry Educ Sci Res Fund (Mombusho) Priority Area Res Rep no A-4–5, pp 177–188 (in Japanese)

    Google Scholar 

  • Ui T, Kawachi S, Neall VE (1986a) Fragmentation of debris avalanche material during flowage -evidence from the Pungarehu Formation, Mount Egmont, New Zealand. J Volcanol Geotherm Res 27: 255–264

    Google Scholar 

  • Ui T, Yamamoto H, Suzuki K (1986b) Characterization of debris avalanche deposits in Japan. In: Kushiro I (ed) M. Sakuyama and H. Fukuyama memorial volume. J Volcanol Geotherm Res 29: 231–243

    Google Scholar 

  • Valentine GA (1987) Stratified flow in pyroclastic surges. Bull Volcanol 49: 616–630

    Google Scholar 

  • Vallance JW, Siebert L, Rose WI, Giron J, Banks NG (1995) In: Ida Y, Voight B (eds) Models of magnatic processes and volcanic eruptions. J Volcanol Geotherm Res 66: 337–355

    Google Scholar 

  • van Bemmelen RW (1947) The geology of Indonesia, v 1A, General geology of Indonesia and adjacent archipelagos. Government Printing Office, The Hague, 732 pp

    Google Scholar 

  • Voight B (1981) Time scale for the first moments of the May 18 eruption. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St. Helens, Washington. US Geol Surv Prof Pap 1250: 69–86

    Google Scholar 

  • Voight B (1988) A method for predicting volcanic eruptions. Nature 332: 125–130

    Google Scholar 

  • Voight B, Glicken H, Janda RJ, Douglass PM (1981) Catastrophic rockslide avalanche of May 18. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St. Helens, Washington. US Geol Surv Prof Pap 1250: 347–378

    Google Scholar 

  • Voight B, Janda RJ, Glicken H, Douglass PM (1983) Nature and mechanics of the Mount St. Helens rockslide-avalanche of 18 May 1980. Geotechnique 33: 243–273

    Google Scholar 

  • Voight B, Janda RJ, Glicken H, Douglass PM (1985) Reply to discussion: nature and mechanics of the Mount St. Helens rockslide-avalanche of 18 May 1980. Geotechnique 35: 357–368

    Google Scholar 

  • Wadge G, Francis PW (1995) The Socompa collapse and avalanche event. In: Ida Y, Voight B (eds) Models of magnatic processes and volcanic eruptions. J Volcanol Geotherm Res 66: 309–336

    Google Scholar 

  • Waitt RB (1981) Devastating pyroclastic density flow and attendant air fall of May 18 — stratigraphy and sedimentology of deposits. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St. Helens, Washington. US Geol Surv Prof Pap 1250: 439–460

    Google Scholar 

  • Walker GPL (1971) Grain-size characteristics of pyroclastic deposits. J Geol 79: 696–714

    Google Scholar 

  • Williams H (1941) Calderas and their origin. Calif Univ Publ Geol Sci 25: 239 – 346

    Google Scholar 

  • Yarnold JC, Lombard JP (1989) A facies model for large rock-avalanche deposits formed in dry climates. In: Colburn IP, Abbott PL, Minch J (eds) Conglomerates in basin analysis: a symposium dedicated to A.O. Woodford, Pacific Section. SEPM 62: 9–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Siebert, L. (1996). Hazards of Large Volcanic Debris Avalanches and Associated Eruptive Phenomena. In: Monitoring and Mitigation of Volcano Hazards. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80087-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80087-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80089-4

  • Online ISBN: 978-3-642-80087-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics