Skip to main content

Biochemistry and Synthesis of NO in Sepsis

  • Chapter
Role of Nitric Oxide in Sepsis and ADRS

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 24))

  • 58 Accesses

Abstract

Nitric oxide (NO), although credited as being the smallest biologic product of mammalian cells, has generated a tidal wave of interest and investigation regarding its role as a fundamental intercellular messenger and mediator of such complex pathophysiologic conditions as sepsis. Going from relative obscurity, this molecule has become the focus of nearly 2000 publications per year, earning it the dubious title “molecule of the year” in 1992 by Science (Washington DC). Though nitrogen oxides were suggested to be synthetic products of mammalian cells as early as 1916 by Mitchell et al. [1], it was not until the 1980s that NO was considered to be more than a toxic atmospheric gas. The aim of this chapter will be to discuss the biochemistry and synthesis of NO, its regulation and the potential cytotoxic and cytoprotective roles in which it is involved during sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mitchell HH, Shonle H, Grindley H (1916) The origin of nitrate in the urine. J Biol Chem 24:461

    CAS  Google Scholar 

  2. Kwon N, Nathan C, Gilker C (1990) L-citrulline production from L-arginine by macrophage nitric oxide synthase: The ureido oxygen derives from dioxygen. J Biol Chem 265:442–445

    Google Scholar 

  3. Leone A, Palmer R, Knowles R (1991) Constitutive and inducible nitric oxide synthases incorporate molecular oxygen into both nitric oxide and citrulline. J Biol Chem 266:790–795

    Google Scholar 

  4. Kam P, Govender G (1994) Nitric oxide: Basic science and clinical application. Anaesthesia 49:5115–5121

    Google Scholar 

  5. Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH (1991) Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 351:714–718

    Article  PubMed  CAS  Google Scholar 

  6. Nakane M, Schmidt HHHW, Pollock JS, Forstermann U, Murad F (1993) Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle. FEBS Lett 316:175–180

    Article  PubMed  CAS  Google Scholar 

  7. Lamas S, Marsden PA, Li GI, Tempst P, Michel L (1992) Endothelial nitric oxide synthase: Molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc Natl Acad Sci USA 89:6348–6352

    Article  PubMed  CAS  Google Scholar 

  8. Sessa WC, Harrison JK, Barber CM (1992) Molecular cloning and expression of cDNA encoding endothelial cell nitric oxide synthase. J Biol Chem 267:15274–15276

    PubMed  CAS  Google Scholar 

  9. Nishida K, Harrison DG, Navas JP (1992) Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase. J Clin Invest 90:2092–2096

    Article  PubMed  CAS  Google Scholar 

  10. Janssens SP, Shimouchi A, Quertermous T, Bloch DB, Block KD (1992) Cloning and expression of a cDNA encoding human endothelium-derived relaxing factor/nitric oxide synthase. J Biol Chem 267:14519–14522

    PubMed  CAS  Google Scholar 

  11. Marsden PA, Schappert KT, Chen HS (1992) Molecular cloning and characterization of human endothelial nitric oxide synthase. FEBS Lett 307:287–293

    Article  PubMed  CAS  Google Scholar 

  12. Geller D, Lowenstein C, Shapiro R, et al (1993) Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes. Proc Natl Acad Sci USA 90:3491–3495

    Article  PubMed  CAS  Google Scholar 

  13. Geller D, Freeswick P, Nguyen D, Nussler A, et al (1994) Differential induction of nitric oxide synthase in hepatocytes during endotoxemia and the acute-phase response. Arch Surg 129:165–171

    Article  PubMed  CAS  Google Scholar 

  14. Morris S, Billiar T (1994) New insights into the regulation of inducible nitric oxide synthesis. Am J Physiol 266:E829-E839

    PubMed  CAS  Google Scholar 

  15. Closs E, Lyons R, Mitchell M, Cunningham A (1993) Characterization of the third member of the MCAT family of cationic amino acid transporter. Identification of a domain that determines the transport properties of the MCAT proteins. J Biol Chem 268:20796–20800

    PubMed  CAS  Google Scholar 

  16. Morris S, Nakayama D, Nussler A, et al (1995) Co-induction of NO synthase and argininosuccinate synthase gene expression. Implications for regulation of NO synthesis. Proc 3rd Int Meet Biol Nitric oxide (In press)

    Google Scholar 

  17. Blachier F, Touil H, Vrillon B, Posho L, Duee P (1991) Stimulation by D-glucose of the direct conversion of arginine to citrulline in enterocytes isolated from pig jejunum. Biochem Biophys Res Commun 177:1171–1177

    Article  PubMed  CAS  Google Scholar 

  18. Nakayama D, Geller D, Silvio M, et al (1994) Increased activity of de novo tetrahydrobiopterin synthesis in pulmonary artery smooth muscle cells stimulated to produce nitric oxide. Am J Physiol 266:L455-L460

    PubMed  CAS  Google Scholar 

  19. Palmer R, Ashton D, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333:664–666

    Article  PubMed  CAS  Google Scholar 

  20. Palmer R, Ferrige A, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–525

    Article  PubMed  CAS  Google Scholar 

  21. Furchgott R, Zawadzki J (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:272–276

    Article  Google Scholar 

  22. Furchgott R (1980) Studies on relaxation of rabbit aorta by sodium nitrate: Basis for the proposal that the acid activatable component of the inhibitory factor from retractor penis is inorganic nitrate and the endothelium-derived relaxing factor is nitric oxide. In: Vanhoutte PM (ed) Mechanisms of vasodilatation. Raven, New York, pp 401–414

    Google Scholar 

  23. Jacob T, Ochoa J, Udekwu A, et al (1993) Nitric oxide production is inhibited in trauma patients. J Trauma 35:590–597

    Article  PubMed  CAS  Google Scholar 

  24. Tannenbaum S, Fett D, Young V (1978) Nitrite and nitrate are formed by endogenous synthesis in the human intestine. Science 200:1487–1489

    Article  PubMed  CAS  Google Scholar 

  25. Green L, Tannenbaum S, Goldman P (1981) Nitrate synthesis in the germfree and conventional rat. Science 212:56–58

    Article  PubMed  CAS  Google Scholar 

  26. Wagner D, Young V, Tannenbaum S (1983) Mammalian nitrate biosynthesis: Incorporation of NH3 into nitrate is enhanced by endotoxin treatment. Proc Natl Acad Sci USA 80:4518–4521

    Article  PubMed  CAS  Google Scholar 

  27. Stuehr D, Marletta M (1985) Mammalian nitrate biosynthesis: Mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc Natl Acad Sci USA 82:7738–7742

    Article  PubMed  CAS  Google Scholar 

  28. Petros A, Bennett D, Vallance P (1991) Effect of nitric oxide synthase inhibitor on hypotension in patients with septic shock. Lancet 338:1557–1578

    Article  PubMed  CAS  Google Scholar 

  29. Billiar T, Curran R, Harbrecht B (1990) Modulation of nitrogen oxide synthesis in vivo: NG-monomethyl-L-arginine inhibits endotoxin-induced nitrite/nitrate biosynthesis while promoting hepatic damage. J Leuk Biol 48:565–569

    CAS  Google Scholar 

  30. Kilbourn R, Jubran A, Gross S (1991) Reversal of endotoxin-mediated shock by NG-methyl-L-arginine, an inhibitor of nitric oxide synthesis. Biochem Biophys Res Commun 172:1132–1138

    Article  Google Scholar 

  31. Kilbourn R, Gross S, Jubran A (1990) NG-methyl-L-arginine inhibits tumor necrosis factor-induced hypotension Implications for the involvement of nitric oxide. Proc Natl Acad Sci USA 84:3629–3632

    Article  Google Scholar 

  32. Robertson F, Offner P, Ciceri D, Becker W, Pruitt B (1994) Detrimental hemodynamic effects of nitric oxide synthase inhibition in septic shock. Arch Surg 129:149–156

    Article  PubMed  CAS  Google Scholar 

  33. Kubes P, Kanwar S, Niu X, Gaboury J (1993) Nitric oxide synthesis inhibition induces leukocyte adhesion via superoxide and mast cells. FASEB J 7:1293–1299

    PubMed  CAS  Google Scholar 

  34. Palmer R (1993) The discovery of nitric oxide in the vessel wall: A unifying concept in the pathogenesis of sepsis. Arch Surg 128:396–401

    Article  PubMed  CAS  Google Scholar 

  35. Billiar T, Hoffman R, Curran R, Langrehr J, Simmons R (1992) A role for inducible nitric oxide biosynthesis in the liver in inflammation and in the allogeneic immune response. J Lab Clin Med 120:192–197

    PubMed  CAS  Google Scholar 

  36. Nussler A, Billiar T (1993) Inflammation, immunoregulation, and inducible nitric oxide synthase. J Leuk Biol 54:171–178

    CAS  Google Scholar 

  37. Billiar T, Curran R, Harbrecht B, Stuehr D, Demetris A, Simmons R (1990) Modulation of nitrogen oxide synthesis in vivo: NG-monomethyl-L-arginine inhibits endotoxin induced nitrite/nitrate biosynthesis while promoting hepatic damage. J Leuk Biol 48:565–569

    CAS  Google Scholar 

  38. Harbrecht B, Billiar T, Stadler J, et al (1992) Inhibition of nitric oxide synthesis during endotoxemia promotes intrahepatic thrombosis and an oxygen radical-mediated hepatic injury. J Leuk Biol 52:390–394

    CAS  Google Scholar 

  39. Harbrecht B, Stadler J, Demetris A, Simmons R, Billiar T (1994) Nitric oxide and prostaglandins interact to prevent hepatic damage during murine endotoxemia. Am J Physiol 266:G1004-G1010

    PubMed  CAS  Google Scholar 

  40. Rubbo H, Radi R, Trujillo M, et al (1995) Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation: Formation of novel nitrogen-containing oxidized lipid derivatives. J Biol Chem (In press)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shears, L.L., Billiar, T.R. (1995). Biochemistry and Synthesis of NO in Sepsis. In: Fink, M.P., Payen, D. (eds) Role of Nitric Oxide in Sepsis and ADRS. Update in Intensive Care and Emergency Medicine, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79920-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79920-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79922-8

  • Online ISBN: 978-3-642-79920-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics