Skip to main content

Plant Control on Evapotranspiration: Models and Measurements

  • Conference paper
The Role of Water and the Hydrological Cycle in Global Change

Part of the book series: NATO ASI Series ((ASII,volume 31))

  • 258 Accesses

Summary

Plants play a dominating role in the evaporation of water from terrestrial systems. They act as a bridging mechanism in the transfer of water from soil to atmosphere. They thus lower the surface resistance to vapour exchange.

The Penman-Monteith combination equation is capable of describing the evaporation at the earth’s surface on the basis of the available energy, the meteorological conditions at some reference height — air temperature and vapour deficit — and two resistance parameters. It is applicable to almost any surface, at landscape scale and at leaf scale as well. It is sometimes used in simplified forms, such as the Priestly-Taylor equation. It can also be used as part of comprehensive multi layer models which can describe stomatal behaviour as function of environmental factors, micro-meteorological exchange within plant canopies or vertical patterns of soil water uptake and feed back mechanisms upon drought. Different modelling aims and different temporal and spatial scales generate the need for different model complexity.

Three types of models with different complexity are evaluated: Single Big Leaf models, SPAC models (Soil-Plant-Atmosphere Continuum) and Multi Layer models. Some soil water uptake models are also presented. Finally, rainfall interception models are discussed as the interception evaporation can be as high as half the precipitation amount and more than the transpiration on a yearly basis.

Several techniques are discussed for measuring the evaporation at different spatial scales including meteorological techniques to determine vapour fluxes above the canopy, the measurement of sap flow in plants, and the measurement of components of the water balance. Special attention is paid to the usefulness of these techniques in parametrizing and validating the various models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aphalo P.J., Jarvis P.G. (1991) Do stomata respond to relative humidity? Plant Cell Environ., 14: 127–132.

    Article  Google Scholar 

  • Aussenac, G. (1970) Action du couvert forestier sur la distribution au sol des precipitations. Ann. Sci. For. 27: 383–399.

    Article  Google Scholar 

  • Ball J.T., Woodrow I.E., Berry J.A. (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggens Q(Ed.), Progress in Photosynthesis research. Vol. IV.: 221–225, Marinus Nijhoff, Dordrecht.

    Google Scholar 

  • Barthakur N.N. (1983) The beta-ray gauge as a leaf wetness detector. Int. J. Appl. Radiat. Isot., 34:1549–1552.

    Article  CAS  Google Scholar 

  • Bosveld F.C., Bouten W., Noppert F. (1992) Transpiration dynamics of a Douglas fir forest II: Parametrisation of a Single Big Leaf model. In: W.Bouten, Monitoring and modelling forest hydrological processes in support of acidification research. PhD-thesis: 163–180, University of Amsterdam

    Google Scholar 

  • Bouten W., Bosveld F.C. (1992a) Modelling rainfall interception and canopy wetness in a douglas fir stand. In: W. Bouten, Monitoring and modelling forest hydrological processes in support of acidification research. PhD-thesis: 65–88, University of Amsterdam.

    Google Scholar 

  • Bouten W., Bosveld F.C. (1992b) Stomatal control in a partially wet Douglas fir canopy. In: W. Bouten, Monitoring and modelling forest hydrological processes in support of acidification research. PhD-thesis: 181–200, University of Amsterdam.

    Google Scholar 

  • Bouten W., Bosveld F.C., Noppert F., Tiktak A. (1992a) Transpiration dynamics of a Douglas fir forest I: Evaluation of three measuring techniques. In: W. Bouten, Monitoring and modelling forest hydrological processes in support of acidification research. PhD-thesis: 149–161, University of Amsterdam.

    Google Scholar 

  • Bouten W., Heimovaara T.J., Tiktak A. (1992b) Spatial patterns of soil water dynamics in a Douglas fir stand. Water Resources Research, vol.28, no. 12:3227–3233.

    Article  Google Scholar 

  • Bouten W., Swart P.J.F., de Water E. (1991) Microwave transmission, a new tool in forest hydrological research, J. Hydrol., 124, 119–130.

    Article  Google Scholar 

  • Bouten W., Schaap M.G., Aerts J.C.J.H., Vermetten A. (1994) Monitoring and modelling canopy water storage amounts in support of atmospheric deposition studies. J. Hydrol. (Submitted)

    Google Scholar 

  • Businger J.A. (1986) Evaluation of the accuracy with which dry-deposition can be measured with current micro-meteorological techniques. Journal of Applied Meteorology (25):1100–1124.

    Article  Google Scholar 

  • Calder I.R. (1977) A model of transpiration and interception loss from a spruce forest in Plynlimon, central Wales. J. Hydrol. 33:247–275.

    Article  Google Scholar 

  • Calder I.R., Rosier P.T.W. (1976) The design of large plastic-sheet net rainfall gauges. J. Hydrol., 30: 403–405.

    Article  Google Scholar 

  • Calder I.R., Wright I.R. (1986) Gamma ray attenuation studies of interception from Sitka spruce: some evidence for an additional transport mechanism. Water Resour. Res., 22: 409–417.

    Article  Google Scholar 

  • Cassell D.K., Klute A. (1986) Water potential: Tensiometry. In: A. Klute (Ed.): Methods of soil analysis Part I, Physical and Mineralogical Methods 2th ed.: 563–569.

    Google Scholar 

  • Cermâk J., Kucera J. (1981) The compensation of natural temperature gradients at the measuring point during sap flow rate determination in trees. Biol. Plant., 23: 469–471.

    Article  Google Scholar 

  • Cienciala E. (1994) Sap flow, transpiration and water use efficiency of spruce and willow in relation to climatic factors. PhD-thesis, Swe. Univ. Agric. Sci., ISSN 0348–422x.

    Google Scholar 

  • Ford E.D., Deans J.D. (1978) The effect of canopy structure on stemflow, through-fall and interception loss in a young Sitka spruce plantation. J. Appl. Ecology, 15: 905–917.

    Article  Google Scholar 

  • Fritton D.D. (1969) Resolving time, mass absorption coefficient and water content with gamma-ray attenuation. Soil Science Society of America Proceedings, 33:651–655.

    Article  Google Scholar 

  • Gardner W.R. (1960) Dynamic aspects of water availability to plants. Soil Sci. 89: 63–73.

    Article  Google Scholar 

  • Gash J.H.C. (1979) An analytical model of rainfall interception by forests. Quart. J. R. Meteorol. Soc. 105: 43–55.

    Article  Google Scholar 

  • Gash J.H.C., Wright I.R., LLoyd C.R. (1980) Comparative estimates of interception loss from three coniferous forests in Great-Britain. J. Hydrol.. 48: 89–105.

    Article  Google Scholar 

  • Getz R.R. (1978) Dew monitoring network in the south east. Bull. Am. Meteor. Soc., 59: 1150–1154.

    Article  Google Scholar 

  • Goudriaan J. (1977) Crop micrometeorology: a simulation study, 249pp, Pudoc, Wageningen.

    Google Scholar 

  • Granier A. (1985) Une nouvelle methode pour la mesure du flux seve brute dans le tronc des arbres. Ann. Sci. For., 42: 193–200.

    Article  Google Scholar 

  • Granier A. (1987) Mesure du flux de seve brute dans le tronc du Douglas par une nouvelle methode termique. Ann. Sci. For., 44: 1–14.

    Article  Google Scholar 

  • Halbertsma J., Przybyla C., Jacobs A. (1987) Application and accuracy of a dielectric soil water content meter. In: Proc. Conf. on measurement of soil and plant water status, Logan USA, 11–15, July 1987.

    Google Scholar 

  • Hancock N.H., Crowther J.M. (1979) A technique for the direct measurement of water storage on a forest canopy. J. Hydrol., 41: 105–122.

    Article  Google Scholar 

  • Heimovaara T.J. (1994) Design of Triple Wire Time Domain Reflectometry Probes in Practice and Theory. Soil Sci. Soc. Am. J. 58: 1410–1417

    Google Scholar 

  • Heimovaara T.J., Bouten W. (1990) A computer controlled 36-channel Time Domain Reflectometry system for monitoring soil water contents. Water Resources Research, 26:2311–2316.

    Google Scholar 

  • Jackson I.J. (1975) Relationships between rainfall parameters and interception by tropical plant forests. J. Hydrol. 24:215–238.

    Article  Google Scholar 

  • Jarvis P.G. (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Phil. Trans. R. Soc. Lond. B. (273):593–610.

    Article  CAS  Google Scholar 

  • Jones H.G. (1973) Estimation of plant water status with the beta gauge. Agric. Meteorol., 11: 345–355.

    Google Scholar 

  • Kowalik P.J., Borghetti M., Busoni E., Sanesi G. (1988) Measured and simulated water relations in a Douglas-fir forest during the development of drought in the Apennines, Central Italy. For. Ecol. Manage. (25):181–194.

    Article  Google Scholar 

  • Lafolie F., Bruckler L., Tardieu F. (1991) Modeling root water potential and soil-root water transport: I: Model presentation. Soil Sci. Soc. Am. J. 55: 1203–1212.

    Article  Google Scholar 

  • Leadley P.W., Drake B.G. (1993) Open top chambers for exposing plant canopies to elevated CO, concentrations and for measuring net gas exchange. Vegetatio 104/105: 3–15.

    Article  Google Scholar 

  • Leuning R., Foster L.J. (1990) Estimation of transpiration by single trees: Comparison of a ventilated chamber, leaf energy budgets and a combination equation. Agric. and For. Meteorol. 51:63–68.

    Article  Google Scholar 

  • Lockwood J.G. (1992) The sensitivity of the water balance of a wet multi layer model pine canopy to variations in micrometeorological input, Clim. Change, 20, 23–56.

    Google Scholar 

  • Lynn B.H., Carlson T.N. (1991) Simulating transpiration plateaus: the importance of leaf water potential. Ecol. Modelling, 58: 199–208.

    Article  Google Scholar 

  • Makkink G.F. (1957) Testing the Penman formula by means of lysimeters. Journ. Int. of Water Eng. 11: 277–288.

    Google Scholar 

  • Marthaler H.P., Vogelsanger W., Richard F., Wierenga P.J. (1983) A pressure transducer for field tensiometers. Soil Science Society of America Journal, 47:624–627.

    Article  Google Scholar 

  • McKenney M.S., Rosenberg N.J. (1993) Sensitivity of some potential evapotranspiration estimation methods to climate change. Agric. For. Meteorol., 64: 81–110.

    Article  Google Scholar 

  • McNaughton K.G., Jarvis P.G. (1991) Effects of spatial scale on stomatal control of transpiration. Agric. For. Meteorol., 54: 279–301.

    Article  Google Scholar 

  • Monteith J.L. (1965) Evaporation and environment. In: The state and movement of water in living organisms. 19th Symp. Soc. Exp. Biol. (G.E. Fogg, ed.), pp205–235. Cambridge University Press, London.

    Google Scholar 

  • Mott K.A., Parkhurst D.F. (1991) Stomata’ response to humidity in air and helox. Plant Cell Environm., 14, 509–515.

    Article  Google Scholar 

  • Mulder J.P.M. (1985) Simulating interception loss using standard meteorological data. In: Hutchison, B.A. and B.B. Hicks (eds), The forest-atmosphere interaction: 177–196, Reidel Publ. Comp.

    Google Scholar 

  • Penman H.L. (1948) Natural evaporation from open water, bare soil and grass., Proc. Roy. Soc. London, Ser A, 193, pp120–146.

    Article  CAS  Google Scholar 

  • Priestley C.H.B., Taylor R.J. (1972) On the assessment of surface heat flux and evaporation using large scale parameters. Monthly Weather Review, 100, 2, pp 81–92.

    Article  Google Scholar 

  • Rawitz E., Etkin H., Hazan A. (1982) Calibration and field testing of a two-probe gamma-gauge. Soil Science Society of America Journal, 46:461–465.

    Article  Google Scholar 

  • Raupach M.R., Finnigan J.J. (1988) Single layer models of evaporation from plant canopies are incorrect, but useful, whereas multi layer models are correct but useless: Discuss. Aust. J. Plant Physiol., 15: 705–716

    Article  Google Scholar 

  • Rijtema P.E. (1965) An analysis of actual evapotranspiration. Agric. Res. Rep.659, Pudoc, Wageningen, The Netherlands.

    Google Scholar 

  • Rutter A.J., Kershaw K.A., Robins P.C. and Morton A.J. (1971) A predictive model of rainfall interception in forests. I. Deviation of the model from observations in a plantation of Corsican Pine. Agric. Meteorol. 9:367–384.

    Article  Google Scholar 

  • Rutter A.J., Morton A.J., Robins P.C. (1975) A predictive model of rainfall interception in forests, II. Generalization of the model and comparison with observations in some coniferous and hardwood stands. J. Appl. Ecol., 12: 367–380.

    Article  Google Scholar 

  • Sakuratani T. (1981) A heat balance method for measuring water flux in the stem of intact plants. J. Agric. Meteorol., 37: 9–17.

    Article  Google Scholar 

  • Sellers P.J., Lockwood J.G. (1981) A computer simulation of the effects of differing crop types on the water balance of small catchments over long time periods. Quart. J. R. Meteorol. Soc. 107:395–414.

    Article  Google Scholar 

  • Schulze E.D., Cermâk J., Matyssek R., Penka M., Zimmerman R. (1985) Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Picea trees - a comparison of xylem flow, porometer and cuvette measurements. Oecologia 66: 475–483.

    Article  Google Scholar 

  • Shuttleworth W.J. (1976) Experimental evidence for the failure of the PenmanMonteith equation in partly wet canopies. Boundary layer Meteorol., 10: 91–94.

    Article  Google Scholar 

  • Stewart J.B. (1988) Modelling surface conductance of pine forest. Agr. and Forest Met. (43):19–35.

    Article  Google Scholar 

  • Stewart J.B., Thom A.S. (1973) Energy budgets in a pine forest. Quart. J. Roy. Met. Soc., 103: 345–375.

    Google Scholar 

  • Tan C.S., Black T.A. (1976) Factors affecting the canopy resistance of a Douglas-fir forest. Bound. Layer Met. (10):475–488.

    Article  Google Scholar 

  • Thom A.S., Oliver H.R. (1977) On Penman’s equation for estimating regional evaporation. Q.J.R. Meteorol. Soc., 103:345–357.

    Article  Google Scholar 

  • Tiktak A., Bouten W. (1992) Modelling soil water dynamics in a forested ecosystem III: model description and evaluation of discretization. Hydrol. Proc. 6: 455–465.

    Article  Google Scholar 

  • Topp G.C., Davis J.L., Annan A.P. (1980) Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resources Research 16:574–582.

    Article  Google Scholar 

  • Wallin J.R. (1963) Dew, its significance and measurement in phytopathology. Phytopathology 53: 1210–1216.

    Google Scholar 

  • Webb E.K., Pearman G.I., Leuning R. (1980) Corrections of flux measurements for density effects due to heat and water vapour transfer. Quart. J. Met. Soc. (106):85–100.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bouten, W. (1995). Plant Control on Evapotranspiration: Models and Measurements. In: Oliver, H.R., Oliver, S.A. (eds) The Role of Water and the Hydrological Cycle in Global Change. NATO ASI Series, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79830-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79830-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79832-0

  • Online ISBN: 978-3-642-79830-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics