Skip to main content

What Can and What Should Be Controlled During Artificial Ventilation?

  • Conference paper
Control and Automation in Anaesthesia

Abstract

Although significant improvements in respiratory monitoring have occurred over the past decade, modern technology has not decreased the incidence of inadvertently low oxygen concentrations; rather, the incidence has increased [20]. Despite the ubiquitous presence of pulse oxymeters in the intensive care unit, it is unclear if they really contribute to clinical decision-making or if they affect patient morbidity or mortality. We have to conclude, therefore, that the management of ventilation can and should be improved. The question whether an automatic control of ventilation based on excellent respiratory monitoring is useful and whether it may improve the safety for artificially ventilated patients should be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bardoczky Gl, D’Hollander A (1992) Continuous monitoring of the flow-volume loops and compliance during anaesthesia. J Clin Monit 8: 251–252

    Article  PubMed  CAS  Google Scholar 

  2. Bardoczky G, De Francquen P, Engelman E, Capello M (1992) Continuous monitoring of pulmonary mechanics with sidestream spirometry during lung transplantation. J Cardio Thorac Anaesth 6: 731–734

    Article  CAS  Google Scholar 

  3. Falk JL, Rackow EC, Weil MH (1988) End-tidal carbon dioxide concentration during cardiopulmonary resuscitation. N Engl J Med 318: 607–611

    Article  PubMed  CAS  Google Scholar 

  4. Herrera M, Blasco J, Venegas J, Barba R (1985) Mouth occlusion pressure (p0, 1) in acute respiratory failure. Intensive Care Med 11: 134–139

    Article  PubMed  CAS  Google Scholar 

  5. Lemair F, Benito S, Mancebo J (1992) The lung pressure-volume relationship during mechanical ventilation. In: Artigas A, Lemaire F (eds) Adult respiratory distress syndrome. Churchill Livingstone, London, pp 379–384

    Google Scholar 

  6. Linko K, Paloheimo M (1989) Inspiratory end-tidal oxygen content difference: a sensitive indicator of hypoventilation. Crit Care Med 17: 345–348

    Article  PubMed  CAS  Google Scholar 

  7. Marini JJ (1988) Monitoring during mechanical ventilation. Clin Chest Med 9: 73–100

    PubMed  CAS  Google Scholar 

  8. Montgomery AB, Holle RHO, Neagley SR, Pierson DJ (1987) Prediction of successful ventilator weaning using airway occlusion pressure and hypercapnic challenge. Chest 91: 496–499

    Article  PubMed  CAS  Google Scholar 

  9. Murciano D, Boczkowski J, Lecocguic Y, Milic-Emili J (1988) Tracheal occlusion pressure: a simple index to monitor respiratory muscle fatigue during acute respiratory failure. Ann Intern Med 108: 800–805

    PubMed  CAS  Google Scholar 

  10. Nathan SD, Ishaaya AM, Koerner SK, Belman SJ (1993) Prediction of minimal pressure support during weaning from mechanical ventilation. Chest 103: 1215–1219

    Article  PubMed  CAS  Google Scholar 

  11. Ochiari R, Shimadu M, Takeda J, Iwaq Y (1993) Contribution of rib cage abdominal movement to ventilation for successful weaning from mechanical ventilation. Acta Anaesthesiol Scand 37: 131–136

    Article  Google Scholar 

  12. Rossi A, Gottfried SB, Zocchi L (1989) Measurement of static lung compliance during mechanical ventilation. The effect of intrinsic PEEP. Am Rev Respir Dis 139: 672–677

    Google Scholar 

  13. Sassoon CSH, Te TT, Mahutte CK, Light RW (1987) Airway occlussion pressure: an important indicator for successful weaning. Am Rev Respir Dis 135: 107–113

    PubMed  CAS  Google Scholar 

  14. Severinghaus J, Kelleher J (1992) Recent Developments in pulse oximetry. Anesthesiology 76: 1018–1038

    Article  PubMed  CAS  Google Scholar 

  15. Strickland JH, Hasson JH (1993) A computer-controlled ventilator weaning system. Chest 103: 1220–1226

    Article  PubMed  Google Scholar 

  16. Tobin MJ (1990) Respiratory monitoring. JAMA 264: 244–251

    CAS  Google Scholar 

  17. Tobin MJ (1990) Respiratory monitoring during mechanical ventilation. Crit Care Clin 6: 679–709

    PubMed  CAS  Google Scholar 

  18. Tobin MJ, Perez W, Guenther SM (1987) Does rib cage abdominal paradox signify respiratory muscle fatigue? J Appl Physiol 63: 851–860

    PubMed  CAS  Google Scholar 

  19. Trillo R, Aukburg S (1992) Dapsone-induced methemoglobinemia and pulse oximetry. Anesthesiology 77: 594–536

    Article  PubMed  Google Scholar 

  20. Ty Smith N (1993) Monitoring and equipment. Curr Opin Anaesthesiol 6: 927–929

    Article  Google Scholar 

  21. Weingarten M (1986) Anesthetic and ventilator mishaps: prevention and detection. Crit Care Med 14: 1084–1086

    Article  PubMed  CAS  Google Scholar 

  22. Weingarten M (1989) Prioritization of monitors for the detection of mishaps. Semin Anaesth 8: 1–12

    Google Scholar 

  23. Weingarten M (1990) Respiratory monitoring of carbon dioxide and oxygen: a ten-year perspective. J Clin Monit 6: 217–225

    Article  PubMed  CAS  Google Scholar 

  24. Vegfors M, Lindberg L, Oberg P, Lennmarken C (1992) The accuracy of pulse oximetry at two haematocrit levels. Acta Anaesthesiol Scand 36: 454–459

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bender, H.J. (1995). What Can and What Should Be Controlled During Artificial Ventilation?. In: Schwilden, H., Stoeckel, H. (eds) Control and Automation in Anaesthesia. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79573-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79573-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79575-6

  • Online ISBN: 978-3-642-79573-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics