Skip to main content

Role of Adenovirus Structural Components in the Regulation of Adenovirus Infection

  • Chapter
The Molecular Repertoire of Adenoviruses I

Part of the book series: Current Topics in 199/I Microbiology and Immunology ((CT MICROBIOLOGY,volume 199/1))

Abstract

Adenoviruses contain at least 15–16 proteins in a complex assembly with the virus double-stranded genomic DNA. The disposition of the major proteins in the structure has been assigned primarily on the basis of scrutiny of the morphological features of the virus as demonstrated by electron microscopy (Valentine and Pereira 1965), by cross-linking studies (Everitt et al. 1975; Chatterjee et al. 1985) and more recently by the technique of difference imaging, which utilises the results obtained by high-resolution X-ray crystallography of the major capsid protein, the hexon, to reveal the probable location of the minor capsid proteins (Stewart et al. 1991, 1993). However, detailed knowledge of the arrangement of proteins within the capsid and their relationship to the virus genome is still rather rudimentary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson CW, Baum PR, Gesteland RF (1973) Processing of adenovirus 2 induced proteins. J Virol 12: 241–252

    CAS  PubMed  Google Scholar 

  • Anderson CW, Young ME, Flint SJ (1989) Characterisation of the adenovirus 2 virion protein, mu. Virology 172: 506–512

    Article  CAS  PubMed  Google Scholar 

  • Bai M, Harpe B, Freimuth P (1993) Mutations that alter an Arg-Gly-Asp (RGD) sequence in the adenovirus type 2 penton base protein abolish its cell rounding activity and delay virus reproduction in flat cells. J Virol 67: 5198–5205

    CAS  PubMed  Google Scholar 

  • Belin M-T, Boulanger P (1993) Involvement of cellular adhesion sequences in the attachment of adenovirus to the Hela cell surface. J Gen Virol 74: 1485–1497

    Article  CAS  PubMed  Google Scholar 

  • Blair GE, Russell WC (1978) Identification of a protein Kinase associated with human adenoviruses. Virology 86: 157–166

    Article  CAS  PubMed  Google Scholar 

  • Boulanger P, Lemay P, Blair GE, Russell WC (1979) Characterisation of adenovirus protein IX. J Gen Virol 44: 783–800

    Article  CAS  PubMed  Google Scholar 

  • Bukrinsky Ml, Haggerty S, Dempsey MP, Sharova N, Adzhubel A, Spitz L, Lewis P, Goldfarb D, Emerman M, Stevenson M (1993) A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 365: 666–669

    Article  CAS  PubMed  Google Scholar 

  • Chardonnet Y, Dales S (1970) Early events in the interaction of adenoviruses with Hela cells 1. Penetration of type 5 and intracellular release of the DNA genome. Virology 40: 462–477

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee PJ, Vayda ME, Flint SJ (1985) Interactions among the three adenovirus core proteins. J Virol 55: 379–386

    CAS  PubMed  Google Scholar 

  • Chen PH, Ornelles DA, Shenk T (1993) The adenovirus L3 23-kilodalton proteinase cleaves the amino-terminal head domain from cytokeratin 18 and disrupts the cytokeratin network of Hela cells. J Virol 67: 3507–3514

    CAS  PubMed  Google Scholar 

  • Citovsky V, Zambryski P (1993) Transport of nucleic acids through membrane channels: snaking through small holes. Annu Rev Microbiol 47: 167–197

    Article  CAS  PubMed  Google Scholar 

  • Clever J, Kasamatsu H (1991) Simian Virus 4 VP2/3 small structural proteins harbor their own nuclear transport signal. Virology 181: 78–90

    Article  CAS  PubMed  Google Scholar 

  • Cuillel M, Cortolezzis J, Chroboczek J, Langowski J, Ruigrok RWH, Jacrot B (1990) Purification and characterization of wild-type and ts112 mutant protein Ilia of human adenovirus 2 expressed in Escherichia coli. Virology 175: 222–231

    Article  CAS  PubMed  Google Scholar 

  • Cupo JF, Rezanka LJ, Harpst JA (1987) Column purification of adenovirus cores. Anal Biochem 164: 267–270

    Article  CAS  PubMed  Google Scholar 

  • Davey J, Dimmock NJ, Colman A (1985) Identification of the sequence responsible for the nuclear accumulation of the influenza virus nucleoprotein in Xenopus oocytes. Cell 40: 667–675

    Article  CAS  PubMed  Google Scholar 

  • Defer C, Belin M-T, Caillet-Baudin M-L, Boulanger P (1990) Human adenovirus-host cell interactions: a comparative study with members of subgroups B and C. J Virol 64: 3661–3673

    CAS  PubMed  Google Scholar 

  • Devereux J, Haeberli P, Smithies D (1984) A comprehensive set of sequence analysis programs for the Vax. Nucleic Acids Res 12: 387–396

    Article  CAS  PubMed  Google Scholar 

  • Dingwall C, Laskey RA (1991) Nuclear targeting sequences-a concensus? Trends Biochem 16: 478–481

    Article  CAS  Google Scholar 

  • Ericsson C, Grossbach U, Bjorkroth B, Danehalt B (1990) Presence of histone H1 on an active Balbiani Ring gene. Cell 60: 73–83

    Article  CAS  PubMed  Google Scholar 

  • Everitt E, Sundquist B, Pettersson U, Philipson L (1973) Structural proteins of adenoviruses X. Isolation and topography of low molecular weight antigens from the virions of adenovirus type 2. Virology 62: 130–147

    Article  Google Scholar 

  • Everitt E, Lutter L, Philipson L (1975) Structural proteins of adenovirus XII. Location and neighbour relationships among proteins of adenovirus 2 as revealed by enzymatic iodination, immunoprecipitation and chemical cross-linking. Virology 67: 197–208

    Article  CAS  PubMed  Google Scholar 

  • Fredman JN, Engler JA (1993) Adenovirus precursor to terminal protein interacts with the nuclear matrix in vivo and in vitro. J Virol 67: 3384–3395

    CAS  PubMed  Google Scholar 

  • Garcia-Bustos J, Heitman J, Hall MN (1991) Nuclear protein localization. Biochim Biophys Acta 1071: 83–101

    CAS  PubMed  Google Scholar 

  • Gelderblom H, Maichle-Lauppe I (1982) The fibres of fowl adenoviruses. Arch Virol 72: 289–298

    Article  CAS  PubMed  Google Scholar 

  • Greber UF, Willetts M, Webster P, Helenius A (1993) Stepwise dismantling of adenovirus 2 during entry into cells. Cell 75: 477–486

    Article  CAS  PubMed  Google Scholar 

  • Green NM, Wrigley NG, Russell WC, Martin SR, McLachlan AD (1983) Evidence for a repeating cross-beta sheet structure in the adenovirus fibre. EMBO J 2: 1357–1365

    CAS  PubMed  Google Scholar 

  • Hasson TB, Ornelles DA, Shenk T (1992) Adenovirus L1 52 and 55 Kilodalton proteins are present within assembling virions and colocalise with nuclear structures distinct from replication centres. J Virol 66: 6133–6142

    CAS  PubMed  Google Scholar 

  • Hennache B, Boulanger P (1977) Biochemical study of KB cell receptor for adenovirus. Biochem J 166: 237–247

    CAS  PubMed  Google Scholar 

  • Houde A, Weber JM (1990) Adenovirus type 2 precursor proteins are cleaved by proteinases of other adenoviruses. Virology 179: 485–486

    Article  CAS  PubMed  Google Scholar 

  • Hughes RC, Mautner V (1973) Interaction of adenovirus with host-cell membranes. In: Kent P (ed) Membrane-mediated information. Medical and Technical Publishing, Lancaster, pp 104–125

    Google Scholar 

  • Hynes RO (1992) Integrins: versatility, modulation and signalling in cell adhesion. Cell 69: 11–25

    Article  CAS  PubMed  Google Scholar 

  • Kidd AH, Chroboczek J, Cusack S, Ruigrok RWH (1993) Adenovirus type 40 virions contain two distinct fibers. Virology 192: 73–84

    Article  CAS  PubMed  Google Scholar 

  • Krausslich H-G (1991) Human immunodefficiency virus proteinase dimer as component of the viral polyprotein prevents particle assembly and viral infectivity. Proc Natl Acad Sci USA 88: 3213–3217

    Article  CAS  PubMed  Google Scholar 

  • Leith IR, Hay RT, Russell WC (1989) Adenovirus subviral particles and cores can support limited DNA replication. J Gen Virol 70: 3235–248

    Article  CAS  PubMed  Google Scholar 

  • Mangel WF, McGrath WJ, Toledo D, Anderson CW (1993) Viral DNA and a viral peptide are cofactors of adenovirus virion proteinase activity. Nature 361: 274–275

    Article  CAS  PubMed  Google Scholar 

  • Matthews DA, Russell WC (1994) Adenovirus proteins-protein interactions: hexon and protein VI. J Gen Virol 75: 3365–3374

    Article  CAS  PubMed  Google Scholar 

  • Mirza MA, Weber J (1982) Structure of adenovirus chromatin. Biochim Biophys Acta 696: 76–86

    CAS  PubMed  Google Scholar 

  • Morgan C, Rosenkrantz HS, Mednis B (1969) Structure and development of viruses as observed in the electron microscope. X. Entry and uncoating of adenovirus. J Virol 4: 777–796

    CAS  PubMed  Google Scholar 

  • Nermut MV (1980) The architecture of adenoviruses: recent virus and problems. Arch Virol 64:175–196

    Article  CAS  PubMed  Google Scholar 

  • Newcomb WM, Boring JW, Brown JC (1984) Ion etching of human adenovirus 2: structure of the core. J Virol 51: 52–56

    CAS  PubMed  Google Scholar 

  • Pastan I, Seth P, Fitzgerald D, Willingham M (1986) Adenovirus entry into cells: some new observations on an old problem. In: Notkins AL, Oldstone MBA (eds) Concepts in viral pathogenesis, Vol 2. Springer, Berlin Heidelberg NewYork, pp 141–146

    Google Scholar 

  • Patterson S, Bingham RW (1976) Electron microscope observations on the entry of avian infectious bronchitis virus into susceptible cells. Arch Virol 52: 191–200

    Article  CAS  PubMed  Google Scholar 

  • Patterson S, Russell WC (1983) Ultrastructural and immunofluorescence studies of early events in adenovirus-Hela cell interactions. J Gen Virol 64: 1091–1099

    Article  CAS  PubMed  Google Scholar 

  • Pereira HG (1958) A protein factor responsible for the early cytopathic effect of adenoviruses. Virology 6: 601–611

    Article  CAS  PubMed  Google Scholar 

  • Philipson L, Lonberg-Holm K, Pettersson V (1968) Virus-receptor interaction in an adenovirus system. J Virol 2: 1664–1675

    Google Scholar 

  • Rekosh DMK, Russell WC, Bellett AJD, Robinson AJ (1977) Identification of a protein linked to the ends of adenovirus DNA. Cell 11: 283–295

    Article  CAS  PubMed  Google Scholar 

  • Ruigrok RWH, Barge A, Albiges-Rizo C, Dayan S (1990) Structure of adenovirus fibre II. Morphology of single fibres. J Mol Biol 215: 589–596

    Article  CAS  PubMed  Google Scholar 

  • Russell WC, Blair GE (1977) Polypeptide phosphorylation in adenovirus-infected cells. J Gen Virol 34: 19–35

    Article  CAS  PubMed  Google Scholar 

  • Russell WC, Precious BL (1982) Nucleic acid-binding properties of adenovirus structural polypeptides. J Gen Virol 63: 69–79

    Article  CAS  PubMed  Google Scholar 

  • Russell WC, Hayashi K, Sanderson PJ, Pereira HG (1967) Adenovirus antigens-a study of their properties and sequential development in infection. J Gen Virol 1: 495–507

    Article  CAS  PubMed  Google Scholar 

  • Russell WC, Laver WG, Sanderson PG (1968) Internal components of adenovirus. Nature 219: 1127–1130

    Article  CAS  PubMed  Google Scholar 

  • Russell WC, McIntosh K, Skehel JJ (1971) The preparation and properties of adenovirus cores. J Gen Virol 11: 35–46

    Article  CAS  PubMed  Google Scholar 

  • Schaak J, Ho WY-W, Freimuth P, Shenk T (1990) Adenovirus terminal protein mediates both nuclear matrix association and efficient transcription of adenovirus DNA. Genes Dev 4: 1197–1208

    Article  Google Scholar 

  • Seth P (1994) Adenovirus-dependent release of choline from plasma membrane vesicles at an acidic pH is mediated by the penton base protein. J Virol 68: 1204–1206

    CAS  PubMed  Google Scholar 

  • Seth P, Fitz Gerald P, Ginsberg H, Willingham M, Pastan T (1986) Pathway of adenovirus entry into cells In: Crawell RL, Lonberg-Holm K (eds) Virus attachment and entry into cells. American Society for Microbiology, Washington DC, pp 191–195

    Google Scholar 

  • Sheppard M, Trist H (1993) The identification of genes for the major core proteins of fowl adenovirus serotype 10. Arch Virol 132: 443–449

    Article  CAS  PubMed  Google Scholar 

  • Signas G, Akusjärvi G, Pettersson U (1985) Adenovirus 3 fibre polypeptide gene: complications for the structure of the fibre protein. J Virol 53: 672–678

    CAS  PubMed  Google Scholar 

  • Silver L, Anderson CW (1988) Interaction of human adenovirus serotype 2 with human lymphoid cells. Virology 165: 377–387

    Article  CAS  PubMed  Google Scholar 

  • Stewart PL, Burnett RM, Cryklaff M, Fuller SD (1991) Image reconstruction reveals the complex molecular organisation of the adenovirus. Cell 67: 145–154

    Article  CAS  PubMed  Google Scholar 

  • Stewart PL, Fuller SD, Burnett R (1993) Difference imaging of adenovirus: bridging the resolution gap between X-ray crystallography and electron microscopy. EMBO J 12: 2589–2599

    CAS  PubMed  Google Scholar 

  • Stouten PFW, Sander C, Ruigrok RWH, Cusack S (1992) New triple helical model for the shaft of the adenovirus fiber. J Mol Biol 226: 1073–1084

    Article  CAS  PubMed  Google Scholar 

  • Svensson V, Persson R (1984) Entry of adenovirus 2 into Hela cells. J Virol 51: 687–694

    CAS  PubMed  Google Scholar 

  • Svensson V, Persson R, Everitt E (1981) Virus-receptor interaction in the adenovirus system. I. Identification of virion attachment proteins of the Hela cell plasma membrane. J Virol 38: 70–81

    CAS  PubMed  Google Scholar 

  • Temperley SM, Hay RT (1992) Recognition of adenovirus type 2 origin of DNA replication by virally encoded DNA polymerase and preterminal proteins. EMBO J 11: 761–768

    CAS  PubMed  Google Scholar 

  • Valentine RC, Pereira HG (1965) Antigens and the structure of the adenovirus. J Mol Biol 13: 13–26

    Article  CAS  PubMed  Google Scholar 

  • Vayda ME, Rogers AE, Flint SJ (1983) The structure of nucleoprotein cores released by adenovirions. Nucleic Acids Res 11: 441–460

    Article  CAS  PubMed  Google Scholar 

  • Wagner P, Kunz J, Koller A, Hall MN (1990) Active transport of proteins into the nucleus. FEBS Lett 275: 1–5

    Article  CAS  PubMed  Google Scholar 

  • Watson G, Burdon MG, Russell WC (1988) An antigenic analysis of the adenovirus type 2 fibre polypeptide. J Gen Virol 69: 525–535

    Article  CAS  PubMed  Google Scholar 

  • Weber J (1976) Genetic analysis of adenovirus type 2. Ill Temperature sensitivity of processing of viral proteins. J Virol 17: 462–471

    CAS  PubMed  Google Scholar 

  • Webster A, Russell S, Talbot P, Russell WC, Kemp GD (1989) Characterisation of the adenovirus proteinase: substrate specificity. J Gen Virol 70: 3224–3234

    Google Scholar 

  • Webster A, Hay RT, Kemp G (1993) The adenovirus protease is activated by a virus-coded disulphide- linked peptide. Cell 72: 97–104

    Article  CAS  PubMed  Google Scholar 

  • Webster A, Leith IA, Hay RT (1994) Activation of adenovirus-coded protease and processing of preterminal protein. J Virol 68: 7292–7300

    CAS  PubMed  Google Scholar 

  • Wickham TJ, Mathias P, Cheresh DA, Nemerow GR (1993) Integrins αvβ3 and αvβ5 promote adenovirus internalisation but not virus attachment. Cell 73: 309–319

    Article  CAS  PubMed  Google Scholar 

  • Winters WD, Russell WC (1971) Studies on the assembly of adenoviruses in vitro. J Gen Virol 10: 181–194

    Article  CAS  PubMed  Google Scholar 

  • Wolffe AP (1994) Transcription: in tune with the histones. Cell 77: 13–16

    Article  CAS  PubMed  Google Scholar 

  • Wong M-L, Hsu M-T (1989) Linear adenovirus DNA is organised into supercoiled domains in viral particles. Nucleic Acids Res 17: 3535–3550

    Article  CAS  PubMed  Google Scholar 

  • Wong M-L, Hsu M-T (1990) Involvement of topoisomerases in replication, transcription and packaging of the linear adenovirus genome. J Virol 64: 691–699

    CAS  PubMed  Google Scholar 

  • Zhao L, Padmanabhan R (1988) Nuclear transport of adenovirus DNA polymerase is facilitated by interaction with preterminal protein. Cell 55: 1005–1015

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Russell, W.C., Kemp, G.D. (1995). Role of Adenovirus Structural Components in the Regulation of Adenovirus Infection. In: Doerfler, W., Böhm, P. (eds) The Molecular Repertoire of Adenoviruses I. Current Topics in 199/I Microbiology and Immunology, vol 199/1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79496-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79496-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79498-8

  • Online ISBN: 978-3-642-79496-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics