Skip to main content

Adenovirus Endopeptidase and Its Role in Virus Infection

  • Chapter
The Molecular Repertoire of Adenoviruses I

Part of the book series: Current Topics in 199/I Microbiology and Immunology ((CT MICROBIOLOGY,volume 199/1))

Abstract

Although adenoviruses were first described in 1953, significant progress on the study of viral proteins was only realized after the application of the newly discovered protein separation technique by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Metabolic labeling experiments using SDS-PAGE demonstrated the processing of several slightly larger precursor proteins into smaller and stable products (Anderson et al. 1973). Processing of RNA virus polyproteins was well known by this time, but the processing of individual viral proteins had only been described in bacteriophages (Murialdo and Siminovitch 1972). Studies with adenovirus temperature-sensitive mutants showed that processing was coordinately regulated and was linked to some late event in virus assembly, because all mutants were uniformly defective for processing. As most mutants fail to assemble virus particles, assembly appears to be a minimal requirement for precursor processing. That it is not a sufficient requirement is shown by some fiber mutants which assemble fiberless capsids in the absence of precursor processing (Falgout and Ketner 1988). The ts1 mutant was to become the paradigm of this late event. At the nonpermissive temperature, ts1 assembles virus particles which contain the genome and six unprocessed precursor proteins, namely pVI, pVII, pVIII, pIIIa, pµ, and preterminal protein, pTP (Weber 1976, 1990). Significantly, these particles are not infectious because they fail to uncoat (Mirza and Weber 1980; Miles et al. 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410

    CAS  PubMed  Google Scholar 

  • Anderson CW (1990) The proteinase polypeptide of adenovirus serotype 2 virions. Virology 177: 259–272

    Article  CAS  PubMed  Google Scholar 

  • Anderson CW, Baum PR, Gesteland RF (1973) Processing of adenovirus 2-induced proteins. J Virol 12: 241–252

    CAS  PubMed  Google Scholar 

  • Bhatti AR, Weber J (1979a) Protease of adenovirus type 2: partial characterization. Virology 96: 478–485

    Article  CAS  PubMed  Google Scholar 

  • Bhatti AR, Weber JM (1979b) Protease of adenovirus type 2: subcellular localization. J Biol Chem 254: 12265–12268

    CAS  PubMed  Google Scholar 

  • Cai F, Weber JM (1993) Organization of the avian adenovirus genome and the structure of its endopeptidase. Virology 196: 358–362

    Article  CAS  PubMed  Google Scholar 

  • Chen PH, Ornelles DA, Shenk T (1993) The adenovirus L3 23-kilodalton proteinase cleaves the amino- terminal head domain from cytokeratin 18 and disrupts the cytokeratin network of HeLa cells. J Virol 67: 3507–3514

    CAS  PubMed  Google Scholar 

  • Chroboczek J, Bieber F, Jacrot B (1992) The sequence of the genome of adenovirus type 5 and its comparison with the genome of adenovirus type 2. Virology 186: 280–285

    Article  CAS  PubMed  Google Scholar 

  • Everitt E, Ingelman M (1984) Core and chromatin association of the adenovirus type 2 specified endoproteinase. Microbios Lett 25: 75–82

    CAS  Google Scholar 

  • Falgout B, Ketner G (1988) Characterization of adenovirus particles made by deletion mutants lacking the fiber gene. J Virol 62: 622–625

    CAS  PubMed  Google Scholar 

  • Fredman JN, Engler JA (1993) Adenovirus precursor to terminal protein interacts with the nuclear matrix in vivo and in vitro. J Virol 67: 3384–3395

    CAS  PubMed  Google Scholar 

  • Freimuth P, Anderson CW (1993) Human adenovirus serotype 12 virion precursors pMu and pVI are cleaved at amino-terminal and carboxy-terminal sites that conform to the adenovirus 2 endoproteinase cleavage consensus sequence. Virology 193: 348–355

    Article  CAS  PubMed  Google Scholar 

  • Hasson TB, Ornelles DA, Shenk T (1992) Adenovirus L1 52- and 55-kilodalton proteins are present within assembling virions and colocalize with nuclear structures distinct from replication centers. J Virol 66: 6133–6142

    CAS  PubMed  Google Scholar 

  • Higgins DG, Sharp PM (1989) Fast and sensitive multiple sequence alignments on a microcomputer. CABIOS 5: 151–153

    CAS  PubMed  Google Scholar 

  • Houde A, Weber JM (1990) Adenovirus proteinases. Comparison of aminoacid sequences and expression of the cloned cDNA in Escherichia coli. Gene 88: 269–273

    Article  CAS  PubMed  Google Scholar 

  • Khittoo G, Delorme L, Dery CV, Tremblay ML, Weber JM, Bibor-Hardy V, Simard R (1986) Role of the nuclear matrix in adenovirus maturation. Virus Res 5: 391–403

    Article  Google Scholar 

  • Lawson MA, Semler BL (1991) Poliovirus thiol proteinase 3C can utilize a serine nucleophile within the putative catalytic triad. Proc Natl Acad Sci USA 88: 9919–9923

    Article  CAS  PubMed  Google Scholar 

  • Mangel WF, McGrath WJ, Toledo DL, Anderson CW (1993) Viral DNA and a viral peptide can act as cofactors of adenovirus virion proteinase activity. Nature 361: 274–275

    Article  CAS  PubMed  Google Scholar 

  • Matthews DJ, Wells JA (1993) Substrate phage: selection of protease substrates by monovalent phage display. Science 260: 1113–1117

    Article  CAS  PubMed  Google Scholar 

  • Miles BD, Luftig RB, Weatherbee JA, Weihing RR, Weber J (1980) Quantitation of the interaction between adenovirus types 2 and 5 and microtubules inside infected cells. Virology 105: 265–269

    Article  CAS  PubMed  Google Scholar 

  • Mirza MAA, Weber J (1980) Infectivity and uncoating of adenovirus cores. Intervirology 13: 307–311

    Article  CAS  PubMed  Google Scholar 

  • Murialdo H, Siminovitch L (1972) The morphogenesis of bacteriophage lambda. IV. Identification of gene products and control of the expression of the morphogenic information. Virology 48: 785–823

    Article  CAS  PubMed  Google Scholar 

  • Pieniazek N, Velarde J, Pieniazek D, Luftig RB (1989) Nucleotide sequence of human enteric adenovirus type 41 hexon-associated protein VIII precursor (pVIII) including the early region E3 promoter. Nucleic Acids Res 17: 5398

    Article  CAS  PubMed  Google Scholar 

  • Rancourt C, Tihanyi K, Bourbonnière M, Weber JM (1994) Identification of active site residues of the adenovirus endopeptidase. Proc Natl Acad Sci USA 91: 844–847

    Article  CAS  PubMed  Google Scholar 

  • Tihanyi K, Bourbonniere M, Houde A, Rancourt C, Weber JM (1993) Isolation and properties of the adenovirus type 2 proteinase. J Biol Chem 268: 1780–1785

    CAS  PubMed  Google Scholar 

  • Toogood CIA, Murali R, Burnett RM, Hay RT (1989) The adenovirus type 40 hexon: sequence predicted structure and relationship to other adenovirus hexons. J Gen Virol 70: 3203–3214

    Article  CAS  PubMed  Google Scholar 

  • Tremblay ML, Déry CV, Talbot BG, Weber J (1983) In vitro cleavage specificity of the adenovirus type 2 proteinase. Biochim Biophys Acta 743: 239–245

    Article  CAS  PubMed  Google Scholar 

  • Weber J (1976) Genetic analysis of adenovirus type 2. III. Temperature sensitivity of processing of viral proteins. J virol 17: 462–471

    CAS  PubMed  Google Scholar 

  • Weber J (1983) Genetic identification of an endoproteinase encoded by the adenovirus genome. J Mol Biol 167: 217–222

    Article  PubMed  Google Scholar 

  • Weber JM (1990) The adenovirus proteinase. Semin Virol 1: 379–384

    CAS  Google Scholar 

  • Weber JM, Houde A (1987) Spontaneous reversion of a C/T transition mutation in the adenovirus endoproteinase gene. Virology 156: 427–428

    Article  CAS  PubMed  Google Scholar 

  • Weber JM, Tihanyi K (1994) Adenovirus endopeptidases. Proteolytic enzymes, pt D. Methods Enzymol 244: 595–604

    Article  CAS  PubMed  Google Scholar 

  • Weber JM, Cai F, Murali R, Burnett RM (1994) Sequence and structural analysis of murine adenovirus type 1 hexon. J Gen Virol 75: 141–147

    Article  CAS  PubMed  Google Scholar 

  • Webster A, Russell WC, Kemp GD (1989) Characterization of the adenovirus proteinase; substrate specificity. J Gen Virol 70: 3215–3223

    Article  CAS  PubMed  Google Scholar 

  • Webster A, Hay RT, Kemp G (1993) The adenovirus protease is activated by a virus-coded disulphide- linked peptide. Cell 72: 97–104

    Article  CAS  PubMed  Google Scholar 

  • Yeh-Kai L, Akusjärvi G, Aleström P, Pettersson U, Tremblay M, Weber J (1983) Genetic identification of an endo-proteinase encoded by the adenovirus genome. J Mol Biol 167: 217–222

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weber, J.M. (1995). Adenovirus Endopeptidase and Its Role in Virus Infection. In: Doerfler, W., Böhm, P. (eds) The Molecular Repertoire of Adenoviruses I. Current Topics in 199/I Microbiology and Immunology, vol 199/1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79496-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79496-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79498-8

  • Online ISBN: 978-3-642-79496-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics