Skip to main content

Progress Toward a Completely Implantable Left Ventricular Assist Device at the Pennsylvania State University

  • Chapter
Assisted Circulation 4

Abstract

A multidisciplinary effort has been underway at Penn State University’s Hershey Medical Center and University Park campus to build a left ventricular assist device (LVAD) which will be suitable for patients requiring long-term circulatory support. Substantial progress has been achieved by the successful testing of a sealed, wireless LVAD system in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Quinn RD, Pae WE, Pierce WS (1990) The use of mechanical circulatory assistance as a bridge to heart transplantation: the Penn State experience. In: Hetzer R (ed) Mechanical circulation as a bridge to transplantation. Springer, Berlin Heidelberg New York

    Google Scholar 

  2. Pierce WS, Quinn RD (1991) Current status of mechanical circulatory assist devices. In: Weiss J, Bonheim R (eds) Current trends in circulatory assistance, vol 1, no 1. Cahners, New York, pp 1–7

    Google Scholar 

  3. Pae WE, Miller CA, Matthews Y, Pierce WS (1992) Ventricular assist devices for postcardiotomy cardiogenic shock: a combined registry experience. J Thorac Cardiovasc Surg 104(3):541–553

    PubMed  Google Scholar 

  4. Hogness JR, VanAntwerp MV (eds) (1991) The artificial heart: prototypes, policies, and patients. National Academy Press, Washington DC

    Google Scholar 

  5. Weiss WJ, Rosenberg G, Snyder AJ, Donachy J, Reibson J, Kawaguchi O, Sapirstein JS, Pae WE, Pierce WS (1993) A completely implanted left ventricular assist device (LVAD): chronic in vivo testing. ASAIO J 39(3):M427-M432

    Article  PubMed  CAS  Google Scholar 

  6. Richenbacher WE, Pae WE, Magovern JA, Rosenberg G, Snyder AJ, Pierce WS (1986) A rollerscrew electric motor ventricular assist device. ASAIO Trans 32:46–38

    PubMed  CAS  Google Scholar 

  7. Pierce WS, Snyder AJ, Rosenberg G, Weiss W, Pae WE, and Waldhausen JA (1993) A long-term ventricular assist device. J Thorac Cardiovasc Surg 105(3):520–524

    PubMed  CAS  Google Scholar 

  8. Rosenberg G, Snyder A, Weiss W, Cleary T, Pierce WS (1988) A permanent left ventricular assist device, In vivo testing. IEEE Eng Med Biol Soc 65–67

    Google Scholar 

  9. Rosenberg G, Snyder A, Weiss W, Landis DL, Geselowitz DB, Pierce WS (1982) A rollerscrew drive for implantable blood pumps. ASAIO Trans 28:1–23

    Google Scholar 

  10. Baldwin JT, Deutsch S, Geselowitz DB, Tarbell JM (1990) Estimation of Reynolds stresses within the Penn State ventricular assist device. Trans Am Soc Artif Intern Organs 36:M274-M278

    CAS  Google Scholar 

  11. Baldwin JT, Tarbell JM, Deutsch S, Geselowitz DB (1990) Reynolds stress measurements within the outet port of the Penn State LVAD. In: Proceedings of the 16th Annual Northeast Bioengineering Conference, pp 17–18 (IEEE Catalogue no 90-CH2834–0)

    Google Scholar 

  12. Baldwin JT, Tarbell JM, Deutsch S, Geselowitz DB (1991) Mean velocities and Reynolds stresses within regurgitant jets produced by tilting disk valves. Trans Am Soc Artif Intern Organs 37:M348-M349

    CAS  Google Scholar 

  13. Baldwin JT, Deutsch S, Petrie HL, Tarbell JM (1993) Determination of prinicipal Reynolds stresses in pulsatile flows after elliptical filtering of discrete velocity Measurements. J Biomech Eng 115:396–403

    Article  PubMed  CAS  Google Scholar 

  14. Baldwin JT, Deutsch S, Geselowitz DB, Tarbell JM (1994) LDA Measurements of mean velocity and Reynolds stress fields within an artificial heart ventricle. J Biomech Eng 116:190–200

    Article  PubMed  CAS  Google Scholar 

  15. Lamson, TC, Rosenberg G, Geselowitz, DB, Deutsch S, Stinebring DR, Frangos JA, Tarbell JM (1993) Relative blood damage in the three phases of a prosthetic heart valve flow cycle. ASAIO J 39:M626–633

    Article  PubMed  CAS  Google Scholar 

  16. Lamson TC, Stinebring DR, Deutsch S, Rosenberg G, Tarbell JM (1991) real-time in vitro observation of cavitation in a prosthetic heart valve. Trans Am Soc Artif Intern Organs 37:M351–353

    CAS  Google Scholar 

  17. Reid JS, Rosenberg G, Pierce WS (1985) Transmission of water through a biocompatible polyurethane - application to circulatory assist devices. J Biomed Mater Res 19:1181–1202

    Article  PubMed  CAS  Google Scholar 

  18. Snyder AJ, Weiss WJ, Nazarian R (1989) Microcomputer control of implantable blood pumps. Proceedings of the 2nd Annual IEEE Symposium on Computer-Based Medical Systems. IEEE, New York, 154–157

    Google Scholar 

  19. Snyder AJ, Rosenberg G, Landis D (1985) Indirect estimation of circulatory pressures for control of an electric motor-driven total artificial hear. In: Langrana NA (ed) Advances in bioengineering. The American Society of Mechanical Engineers, New York, pp 87–88

    Google Scholar 

  20. Sherman C, Daly B, Dasse K, Clay W, Szycher M, Handrahan J, Schuder J, Lewis M, Worthington M, Hopkins R, Poirier V (1983) Research and development: systems for transmitting energy through intact skin. Final Technical Report N01-HV-0–2903–3, Thermo Electron Corp., Waltham, July 1983.

    Google Scholar 

  21. Weiss WJ, Rosenberg G, Snyder AJ, Pae WE, Richenbacher WE, Pierce WS (1989) In vivo performance of a transcutaneous energy transmission system with the Penn State motor-driven ventricular assist device. Trans Am Soc Artif Intern Organs 35:284–288

    CAS  Google Scholar 

  22. Snyder AJ, Nazarian R, Weiss W (1993) A secure communications and status reporting protocol for implanted devices. In: Kriewall T (ed) Proceedings of the Sixth Annual IEEE Symposium on Computer-Based Medical Systems. IEEE Computer Society, Los Alamitos, pp 253–257

    Google Scholar 

  23. Rosenberg G, Phillips WM, Landis DL, Pierce WS (1981) Design and evaluation of the Pennsylvania State Unversity mock circulatory system. ASAIO Trans 4:41–49

    Google Scholar 

  24. Dai SH, Wang MO (1992) Reliability analysis in engineering applications. Van Nostrand Reinhold, New York

    Google Scholar 

  25. Nelson W (1982) Applied life data analysis. Wiley, New York

    Book  Google Scholar 

  26. Ventricular Assist Device (VAD) (1992) Pathology analyses: guidelines for clinical Studies. Society for Biomaterials: Implant Retrieval Symposium - Transactions, Pheasant Run Resort, St Charles, 17–20 Sept 1992, pp 13–20

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weiss, W.J. et al. (1995). Progress Toward a Completely Implantable Left Ventricular Assist Device at the Pennsylvania State University. In: Unger, F. (eds) Assisted Circulation 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79340-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79340-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79342-4

  • Online ISBN: 978-3-642-79340-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics