Skip to main content

The Development of Low-cost Temporary and Permanent Circulatory Assist Devices

  • Chapter
Assisted Circulation 4
  • 67 Accesses

Abstract

There is a growing realization in the United States (US) that the resources available for providing health care are finite. As a direct result of this perceived need for containing health care costs, technological innovation in medicine is increasingly being examined on a cost/benefit basis as well as on the basis of its efficacy. The mere fact that something is technically possible is no longer considered to be sufficient justification for funding continued research or providing patient care with costly treatment modalities. Expressed more directly, the days of preserving life at any cost appear to be over in this country.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McGee MG, Myers TJ, Abou-Awdi N, Dasse KA, Radovancevic B, Lonquist JL, Duncan JM, Frazier OH (1991) Extended support with a left ventricular assist device as a bridge to transplantation. ASAIO Trans 37(3) :M425–426

    PubMed  CAS  Google Scholar 

  2. McCarthy PM, Portner PM, Tobler HG, Starnes VA, Ramasamy N, Oyer PE (1991) Clinical experience with the novacor ventricular assist system. Bridge to transplantation and the transition to permanent application. J Thorac Cardiovasc Surg 102:578–587

    PubMed  CAS  Google Scholar 

  3. Norman JC, Whalen RL, Daly BDT, Migliore JJ, Huffman FN (1972) An implantable left ventricular assist device (LVAD). Clin Res 20(5):855

    Google Scholar 

  4. Bernhard WF, Berger RL, Stetz JP et al. (1979) Temporary left ventricular bypass: factors affecting patient survival. Circulation 60[Suppl]:131–141

    PubMed  CAS  Google Scholar 

  5. Pierce WS (1985) Effective clinical application of ventricular bypass. Ann Thorac Surg 36: 2–3

    Article  Google Scholar 

  6. Whalen Biomedical Inc (1985) Investigational use of a temporary left ventricular assist device. IDE no G850097-A1

    Google Scholar 

  7. Whalen RL, Hurford WE, Skoskiewicz M, Wonders TR, Zapol WM (1987) A new right ventricular assist device: the extracorporeal pulsatile assist device (EPAD). ASAIO Trans 10(3): 222–226

    Google Scholar 

  8. Utoh J, Whalen RL, Wilkerson BR, Fukamachi K, Harasaki H (1993) Chronic in vivo function of a new ventricular assist device: the extracorporeal pulsatile assist device (EPAD). Int J Artif Organs 16:91–95

    PubMed  CAS  Google Scholar 

  9. Whalen RL, Cardona R, Kantrowitz A (1992) A new all silicone rubber small vessel prosthesis. ASAIO Trans 38(3):M207–212

    Article  CAS  Google Scholar 

  10. Whalen RL, Murakami T, Ozawa K, Snow J, Nose Y (1979) Powder metal surfaces as a blood interface material. Trans Soc Biomat 3:39

    Google Scholar 

  11. Nose’ Y, Schamann M, Kantrowitz A (1963) Experimental use of an electronically controlled prosthesis as an auxiliary left ventricle. Trans Am Soc Artif Intern Organs 19:269–274

    Google Scholar 

  12. National Heart, Lung, and Blood Institute (1990) Mechanisms of damage caused by cardiopulmonary bypass. (RFA 90-HL-12-H)

    Google Scholar 

  13. Dernevik L, Advidsson S, William-Olsson G (1985) Cerebral perfusion in dogs using pulsatile and non-pulsatile extracorporeal circulation. J Cardiovasc Surg 26:32–35

    CAS  Google Scholar 

  14. Matsumoto T, Wolferth CC, Perlman MH (1971) Effects of pulsatile and nonpulsatile perfusion upon cerebral and conjunctival microcirculation in dogs. Am Surg 37:61–67

    PubMed  CAS  Google Scholar 

  15. Landymore RW, Murphy DA, Kinley CE et al. (1979) Does pulsatile flow influence the incidence of postoperative hypertension? Ann Thorac Surg 28:261–268

    Article  PubMed  CAS  Google Scholar 

  16. Philbin DM, Levine FH, Kong K et al. (1981) Attenuation of stress response to cardiopulmonary bypass by the addition of pulsatile flow. Circulation 64:808–812

    Article  PubMed  CAS  Google Scholar 

  17. Roberts AJ, Niarchos AP, Subramanian VA et al. (1974) Systemic hypertension associated with coronary artery surgery. J Thorac Cardiovasc Surg 74:846–859

    Google Scholar 

  18. Boucher JK, Rudy LW, Edmunds LH (1974) Organ blood flow during cardiopulmonary bypass. J Appl Physiol 36:86–90

    PubMed  CAS  Google Scholar 

  19. Steed DL, Follette DM, Foglia R, Mahoney JV, Bruckberg GD (1985) Effects of pulsatile and nonpulsatile flow on subendocardial perfusion during cardiopulmonary bypass. Ann Thorac Surg 26:53–58

    Google Scholar 

  20. Salerno TA, Charrett EJP, Kieth FM (1980) Hemolysis during pulsatile perfusion: clinical evaluation of a new device. J Thorac Cardiovasc Surg 79:579–581

    PubMed  CAS  Google Scholar 

  21. Mori F, Ivey TD, Itoh T, Thomas R, Breazeale DG, Misbach G (1987) Effects of pulsatile reperfusion on postischemic recovery of myocardial function after global hypothermic cardiac arrest. J Thorac Cardiovasc Surg 93:719–727

    PubMed  CAS  Google Scholar 

  22. Andersen K, Waaben J, Husum B et al. (1985) Nonpulsatile cardiopulmonary bypass disrupts the flow-metabolism couple in the brain. J Thorac Cardiovasc Surg 90:570–579

    PubMed  CAS  Google Scholar 

  23. Frater RWM, Wakayama S, Oka Y, Becker RM, Desai P, Oyama T, Blaufox MD (1980) Pulsatile cardiopulmonary bypass: failure to influence hemodynamics or hormones. Circulation 62[Suppl I]:19–25

    Google Scholar 

  24. Faraci FM (1993) Cerebral circulation during aging. In: Phillis JW (ed) The regulation of the cerebral circulation. CRC, Boca Raton, chap 31

    Google Scholar 

  25. DeVries WC, Anderson JL, Joyce LD, Anderson FL, Hammond EH, Jarvik RK, Kolf WJ (1984) Clinical use of the total artificial heart. N Engl J Med 310(5):273–278

    Article  PubMed  CAS  Google Scholar 

  26. Sadoshima S, Masatoshi F (1993) Hypertension and the autoregulation of cerebral blood flow. In: Phillis JW (ed) The regulation of the cerebral circulation. CRC, Boca Raton, chap 21

    Google Scholar 

  27. Maxwell WL, Irvine A, Adams JH, Graham DI, Gennarelli TA (1988) Response of the cerebral microvasculature to brain injury. J Pathol 155:327

    Article  PubMed  CAS  Google Scholar 

  28. MacKenzie ET, McCulloch J, O’Keane M, Pickard JD, Harper AM (1976) Cerebral circulation and norepinephrine: relevance of the blood-brain barrier. Am J Physiol 231:483

    PubMed  CAS  Google Scholar 

  29. Bregman D (1978) Clinical experience with a new pulsatile assist device (PAD) during open heart surgery. Artif Organs 2:244–248

    Article  PubMed  CAS  Google Scholar 

  30. Kowallik P (1991) Measurement of regional myocardial blood flow with multiple colored microspheres. Circulation 83:974–982

    PubMed  CAS  Google Scholar 

  31. (1990) MDDI Rep 16(30):16–18

    Google Scholar 

  32. Whalen RL, Briskman RN (1988) An electromagnetic pneumatic blood pump driver. ASAIO Trans 34(3):721–725

    PubMed  CAS  Google Scholar 

  33. Institute of redicine of the National Academy of Sciences (1991) The artificial heart. A report. National Academy Press, Washington DC, p 191

    Google Scholar 

  34. Norman JC, Molokhia FA, Harmison LT, Whalen RL, Huffman FN (1972) An implantable nuclear-fueled circulatory support system I. Systems analysis of conception, design, fabrication, and initial in vivo testing. Ann Surg 176(4):492

    PubMed  CAS  Google Scholar 

  35. Dasse KA, Frazier OH, Lesniak JM, Myers T, Burnett CM, Poirier, VL (1992) Clinical responses to ventricular assistance versus transplantation in a series of bridge-to-transplantation patients. ASAIO Trans 38(3):M622–626

    Article  CAS  Google Scholar 

  36. Antaki JF, Butler KC, Kormos RL, Kawai A, Konishi H, Kerrigan JP, Borovitz HS, Maher TR, Kameneva MV, Griffith BP (1993) In vivo evaluation of the nimbus axial flow ventricular assist system. ASAIO Trans 39(3):M231–236

    Article  CAS  Google Scholar 

  37. Akamatsua T, Nakazeki T, Itoh H (1992) Magnetically suspended centrifugal blood pump. Artif Organs 16:305–308

    Article  Google Scholar 

  38. Golding LR, Murakami G, Harasaki H, Takatani S, Jacobs G, Yada I, Tomita K, Yozu F, Valdes LK, Fujimoto S, Koike S, Nose Y (1982) Chronic nonpulsatile blood flow. ASAIO Trans 28: 81–85

    CAS  Google Scholar 

  39. Salmons S, Jarvis JC (1992) Cardiac assistance from skeletal muscle: a critical appraisal of the various approaches. Br Heart J 68:333–338

    Article  PubMed  CAS  Google Scholar 

  40. Carpentier A, Chachques JC, Grandjean (eds) (1991) Cardiomyoplasty. Futura, Mt Kisko

    Google Scholar 

  41. Grandjean PA, Austin L, Chan BS (1991) Dynamic cardiomyoplasty: clinical follow-up results, J Card Surg 6:80–88

    PubMed  CAS  Google Scholar 

  42. Circulation supplement (1993) Am Heart Assoc 88(4)(pt 2): 1–819

    Google Scholar 

  43. Farrar DJ, Hill JD (1992) A new skeletal linear-pull energy convertor as a power source for prosthetic circulatory support devices. J Heart Lung Transplant 11(5):S34150

    Google Scholar 

  44. Guldner NW, Tilmans MH, DeHaan H, Ruck K, Bressers H, Messmer BJ (1991) Development and training of skeletal muscle ventricles with low preload. J Card Surg 6[1 Suppl]:175–183

    PubMed  CAS  Google Scholar 

  45. Guldner NW, Eichstaedt HC, Klapproth P, Tilmans MHI, Thaudet S, Umbrain V, Ruck K, Wyffels E, Bruyland M, Sigmund M, Messmer BJ, Bardos P (1994) Dynamic training of skeletal muscle ventricles: a method to increase muscular power for cardiac assistance. Circulation (in press)

    Google Scholar 

  46. Whalen RL (1979) Toward a blood pump for long-term circulatory support. In: Unger F (ed) Assisted Circulation. Springer, Berlin Heidelberg New York

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Whalen, R.L. (1995). The Development of Low-cost Temporary and Permanent Circulatory Assist Devices. In: Unger, F. (eds) Assisted Circulation 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79340-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79340-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79342-4

  • Online ISBN: 978-3-642-79340-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics