Skip to main content

Comparative Pulmonary Morphology and Morphometry: The Functional Design of Respiratory Systems

  • Chapter
Advances in Comparative and Environmental Physiology

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 20))

Abstract

Though there are assertions that life is possible without oxygen, such states can only exist for definite periods and in simplest of life forms (Hochachka et al. 1973; Herreid 1980; Portner et al. 1985). Intestinal parasites have been said to live without molecular oxygen and intertidal molluscan facultative anaerobes survive for days without it (Ghiretti 1966). Extended life in total anoxia is impossible in more advanced animals. Adaptively, however, in unpropitious ambient conditions, some animals drastically reduce their energy needs by adopting latent (ametabolic) life states, variably termed aestivation, lethargy, hibernation, quiescence and dormancy. Cryptobiosis, a state when life virtually stops is the extreme of such low energy retreats (Hochachka and Guppy 1987). Even in such a state an infinitesimal quantity of energy must, nevertheless, be essential to sustain the integrity of the basic molecular life-support processes such as protein turnover and ion pumping. The presence of oxygen is crucial in maintaining what was appropriately termed by Kleiber (1961) “the fire of life”. Metabolic rate is an expression of intensity and speed of life while death is empirically a state of zero cellular energy production. Energy is crucial to all biological events from molecular and biochemical level to ecological and evolutionary processes. To varying extents, the principal factors which appear to determine the metabolic demands of an organism are size, phylogeny, temperature and physical activity (Bennett 1988a).

“It is generally agreed that animal life originated in the sea and that adaptive radiation subsequently led to the colonization of other environments — shores and estuaries, streams and lakes, bog, mountain, and desert. In their invasion of these habitats, animals left the equable, relatively stable surroundings of the open sea and subjected themselves to the rigors of temperature fluctuations and extremes, a variety of ionic backgrounds, areas of depleted oxygen or the possibility of aerial exposure and potential desiccation. The spur for this radiation presumably lay in the prize of access to unexploited habitats and sources of energy.”

Davenport (1985)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalla MA, King AS (1975) The functional anatomy of the pulmonary circulation of the domestic fowl. Respir Physiol 23: 267–290

    PubMed  CAS  Google Scholar 

  • Abdalla MA, Maina JN (1981) Quantitative analysis of the exchange tissue of the avian lung (Galliformes). J Anat 133: 677–680

    Google Scholar 

  • Abdalla MA, Maina JN, King AS, King DZ, Henry J (1982) Morphometrics of the avian lung. I. The domestic fowl Gallus gallus var. domesticus. Respir Physiol 47: 267–278

    PubMed  CAS  Google Scholar 

  • Abdel-Magid AM (1971) The ability of Clarias lazera (Pisces) to survive without air-breathing. J Zool (Lond) 163: 63–72

    Google Scholar 

  • Agassiz LD (1857) Contributions to the natural history of the United States, vol I. Little Brown, Boston

    Google Scholar 

  • Alexander McN (1981) Factors of safety in the structure of animals. Sci Prog (Oxf) 67: 109–130

    CAS  Google Scholar 

  • Alexander McN (1982) Optima for animals. Arnold, London

    Google Scholar 

  • Al-Wassa AH, Innes AJ, Whiteley NM, Taylor EW (1989) Aerial and aquatic respiration in the ghost crab Ocypode saratan. I. Fine structure of respiratory surfaces, their ventilation and perfusion, oxygen consumption and carbon dioxide production. Comp Biochem Physiol 94A: 755–764

    Google Scholar 

  • Andersen HT (1961) Physiological adjustments to prolonged diving in American alligator, Alligator mississipiensis. Acta Physiol Scand 53: 23–45

    PubMed  CAS  Google Scholar 

  • Anderson DT (1973) Embryology and phylogeny in annelids and arthropods. Pergamon Press, Oxford

    Google Scholar 

  • Anderson JF (1970) Metabolic rates of spiders. Comp Biochem Physiol 33: 51–72

    PubMed  CAS  Google Scholar 

  • Anderson JF, Prestwich KN (1980) Scaling subunit structure in book lungs of spiders (Araneae). J Morphol 165: 167–174

    Google Scholar 

  • Anderson JF, Prestwich KN (1982) Respiratory gas exchange in spiders. Physiol Zool 55: 72–90

    Google Scholar 

  • Aschoff J, Pohl H (1970) Rhythmic variations in energy metabolism. Fed Proc 29: 1541–1552

    PubMed  CAS  Google Scholar 

  • Assimacopoulus A, Guggenheim R, Kapanci Y (1976) Changes in alveolar capillary configuration at different levels of lung inflation in the rat. Lab Invest 34: 10–21

    Google Scholar 

  • Bailey L (1954) The respiratory currents in the tracheal system of the adult bee. J Exp Biol 31: 589–595

    CAS  Google Scholar 

  • Bakker RT (1975) Dinosaur renaissance. Sci Am 232: 58–78

    Google Scholar 

  • Banzett RB, Butler PJ, Nations CS, Barnas GM, Lehr JL, Jones HJ (1987) Inspiratory aerodynamic valving in goose lungs depends on gas density and velocity. Respir Physiol 70: 287–300

    PubMed  CAS  Google Scholar 

  • Banzett RB, Nations CS, Wang N, Fredberg JJ, Butler JP (1991) Pressure profiles show features essential to aerodynamic valving in geese. Respir Physiol 84: 295–309

    PubMed  CAS  Google Scholar 

  • Barnhart MC (1986) Respiratory gas tensions and gas exchange in active and dormant land snails, Otala lactea. Physiol Zool 59: 733–745

    Google Scholar 

  • Barrel J (1916) Influence of Silurian-Devonian climates on the rise of air-breathing vertebrates. Bull Geol Soc Am 27: 387–436

    Google Scholar 

  • Bartels H, Welsch U (1984) Freeze fracture of the turtle lung 2. Rod shaped particles in the plasma membrane of a mitochondria-rich pneumocyte in Pseudemys (Chrysemys) scripta. Cell Tissue Res 236: 453–457

    PubMed  CAS  Google Scholar 

  • Bartholomew GA, Barnhart CM (1984) Tracheal gases, respiratory gas exchange, body temperature and flight in some tropical cicadas. J Exp Biol 111: 131–144

    Google Scholar 

  • Bartholomew GA, Lighton JRB (1986) Oxygen consumption during hover feeding in free ranging Anna hummingbird. J Exp Biol 123: 191–199

    PubMed  CAS  Google Scholar 

  • Bartlett D, Mortola JP, Doll EJ (1986) Respiratory mechanics and control of the ventilatory cycle in the garter snake. Respir Physiol 64: 13–27

    PubMed  Google Scholar 

  • Baskin DG, Detmers PA (1976) Electron microscopic study of the gill bars of Amphioxus (Brachiostoma californiense) with special reference to neurociliary control. Cell Tissue Res 166: 167–178

    PubMed  CAS  Google Scholar 

  • Baudrimont A (1955) Organisation générale du poumon et structure des alvéoles pulmonaires des vertèbres (amphibiens, reptiliens mammifères) considerés dans leurs rapports avec la mécanique respiratoire, la circulation pulmonaire fonctionelle et l’activité métabolique de ces animaux. Arch Anat Histol Embryol 38: 99–136

    Google Scholar 

  • Baumgarten-Schumann D, Piiper J (1968) Gas exchange in the gills of resting unaesethetized dogfish (Scyliorhinus stellaris). Respir Physiol 5 317–325

    PubMed  CAS  Google Scholar 

  • Bayne BL, Bayne CJ, Carefoot TC, Thompson RJ (1976) The physiological ecology of Mytilus californicus Conrad. 1. Metabolism and energy balance. Oecologia 22: 211–228

    Google Scholar 

  • Beadle LC (1957) Respiration in the African swampworm Alma emini (Mich). J Exp Biol 34: 1–10

    CAS  Google Scholar 

  • Bech C, Johansen K (1980) Ventilation and gas exchange in the mute swan, Cygnus olor. Respir Physiol 39: 285–295

    PubMed  CAS  Google Scholar 

  • Bech C, Rautenberg W, May B (1985) Ventilatory oxygen extraction during cold exposure in the pigeon (Columba livia). J Exp Biol 116: 499–502

    Google Scholar 

  • Belkin DA (1963) Anoxia tolerance in reptiles. Science 139: 492–493

    PubMed  CAS  Google Scholar 

  • Belkin DA (1964) Variations in heart rate during voluntary diving in the turtle Pseudemys concinna. Copeia 2: 321–330

    Google Scholar 

  • Belkin DA (1968) Aquatic respiration and under water survival of two fresh water turtle species. Respir Physiol 4: 1–14

    PubMed  CAS  Google Scholar 

  • Bell PB, Stark-Vancs VI (1983) Scanning electron microscopic study of the microarchitecture of the lung of the giant salamander Amphiuma tridactylum. Scan Electr Microsc 1983: 449–456

    Google Scholar 

  • Benerjee V (1966) Blood of some Indian vertebrates. Naturwissenschaften 53: 1370

    Google Scholar 

  • Bennett AF (1972) A comparison of activities of metabolic enzymes in lizards and rat. Comp Biochem Physiol B 42: 637–647

    PubMed  CAS  Google Scholar 

  • Bennett AF (1988a) Structural and functional determinates of metabolic rate. Am Zool 28: 699–708

    Google Scholar 

  • Bennett MB (1988b) Morphometric analysis of the gills of the European eel Anguilla anguilla. J Zool (Lond) 215: 549–560

    Google Scholar 

  • Bennett AF, Dawson WR (1976) Metabolism. In: Gans C, Dawson WR (eds) Biology of the reptilia, vol 5. Academic Press, New York, pp 127–223

    Google Scholar 

  • Bennett AF, Naggy KA (1977) Energy expenditure in free ranging lizards. Ecology 58: 697–700

    Google Scholar 

  • Bennett AF, Ruben JA (1979) Endothermy and activity in vertebrates. Science 206: 649–654

    PubMed  CAS  Google Scholar 

  • Bennett FM, Tenney SM (1982) Comparative mechanics of mammalian respiratory system. Respir Physiol 49: 131–140

    PubMed  CAS  Google Scholar 

  • Berg T, Steen JB (1965) Physiological mechanisms for aerial respiration in the eel. Comp Biochem Physiol 15: 469–484

    PubMed  CAS  Google Scholar 

  • Berg T, Steen JB (1966) Regulation of ventilation in eels exposed to air. Comp Biochem Physiol 18: 511–516

    PubMed  CAS  Google Scholar 

  • Bernstein MH (1976) Ventilation and respiratory evaporation in the flying crow, Corpus ossifragus. Respir Physiol 26: 371–382

    PubMed  CAS  Google Scholar 

  • Bertin L (1958) Organes de la respiration aerienne. In: Grasse PD (ed) Traité de Zoologie, vol 13. Massonet Cie, Paris, pp 1363–1398

    Google Scholar 

  • Bishop IR, Foxon GEH (1968) The mechanism of breathing in the South American lungfish, Lepidosiren paradoxa; a radiological study. J Zool (Lond) 154: 262–271

    Google Scholar 

  • Black CP, Tenney SM, Kroonenburg M (1978) Oxygen transport during progressive hypoxia in bar-headed geese (Anser indicus) acclimated to sea level and 5600 m. In: Piiper J (ed) Respiratory function in birds, adult and embryonic. Springer, Berlin Heidelberg New York, pp 78–83

    Google Scholar 

  • Black EC, Fry FEJ, Black VS (1954) The influence of carbon dioxide on the utilization of oxygen by some fresh water fish. Can J Zool 32: 408–420

    Google Scholar 

  • Bliss DE (1968) Transition from water to land in decapod crustacea. Am Zool 8: 355–392

    Google Scholar 

  • Boresi AP (1955) A refinement of the theory of the buckling of rings under uniform pressure. J Appl Mech 22: 95–102

    Google Scholar 

  • Bouverot P, Douguet D, Sebert P (1979) Role of the arterial chemoreceptors in the ventilatory adaptations to hypoxia in awake Pekin ducks. J Comp Physiol 133B: 177–186

    Google Scholar 

  • Brackenbury JH (1971) Mr-flow dynamics in the avian lung as determined by direct and indirect methods. Respir Physiol 13: 319–329

    PubMed  CAS  Google Scholar 

  • Brackenbury JH (1972) Lung air-sac anatomy and respiratory pressures in the bird. J Exp Biol 57: 543–550

    PubMed  CAS  Google Scholar 

  • Brackenbury JH, Amaku J (1990) Effects of combined abdominal and thoracic air sac occlusion on respiration in domestic fowl. J Exp Biol 152: 93–100

    Google Scholar 

  • Brett JR (1964) The respiratory metabolism and swimming performance of the young sockeye salmon. J Fish Res 21: 118–126

    Google Scholar 

  • Bretz WL, Schmidt-Nielsen K (1972) The movement of gas in the respiratory system of the duck. J Exp Biol 56: 57–65

    Google Scholar 

  • Bridges CR, Kester P, Scheid P (1980) Tracheal volume in the pupa of the saturniid moth Hyalophora cecropia determined with inert gases. Respir Physiol 40: 281–291

    PubMed  CAS  Google Scholar 

  • Brooks RE (1970) Ultrastructure of the physostomatous swimbladder of rainbow trout Salmo gairdneri. Z Zellforsch Mikrosk Anat 106: 473–483

    PubMed  CAS  Google Scholar 

  • Browman MW, Kramer DL (1985) Pangasius sutchi (Pangasiidae), an air breathing catfish uses the swimbladder as an accessory organ. Copeia 1985: 994–998

    Google Scholar 

  • Buck JB (1948) The anatomy and physiology of the light organs in fire-flies. Ann NY Acad Sci 49: 397–482

    CAS  Google Scholar 

  • Buck JB (1962) Physical aspects of insect respiration. Annu Rev Entomol 7: 27–56

    Google Scholar 

  • Buck JB, Keister M (1958) Cyclic CO2 release in diapausing pupae. II. Tracheal anatomy, volume and PCO2, blood volume, interburst CO2 release rate. J Insect Physiol 1: 327–340

    CAS  Google Scholar 

  • Burger R (1980) Respiratory gas exchange and control in the chickens. Poult Sci 59: 2654–2665

    PubMed  CAS  Google Scholar 

  • Burggren WW, Johansen K (1986) Circulation and respiration in lungfishes (Dipnoi). J Morphol (Suppl) 1: 217–236

    Google Scholar 

  • Burggren WW, McMahon BR (1983) An analysis of scaphognathite pumping performance in the crayfish Orconectes virilis: compensatory changes to acute and chronic exposure. Physiol Zool 56: 309–318

    Google Scholar 

  • Burggren WW, McMahon BR (1988) Circulation. In: Burggren BB, McMahon BR (eds) Biology of the crabs. Cambridge University Press, Cambridge, pp 298–332

    Google Scholar 

  • Burggren WW, McMahon BR, Costerton JW (1974) Branchial water and blood flow patterns and the structure of the gill of the crayfish Procambarus clarkii. Can J Zool 52: 1511–1518

    PubMed  CAS  Google Scholar 

  • Burggren WW, Glass ML, Johansen K (1978) Intrapulmonary variation of gas partial pressure and ventilation inequalities in chelonian reptiles. J Comp Physiol 126: 203–209

    Google Scholar 

  • Burggren WW, Dupre RK, Wood SC (1987) Allometry of red cell oxygen binding and hematology in larvae of the salamander Ambryostoma tigrinum. Respir Physiol 70: 73–84

    PubMed  CAS  Google Scholar 

  • Burnett LE, McMahon BR (1987) Gas exchange, haemolymph acid base status and the role of branchial water stores during air exposure in three littoral crab species. Physiol Zool 60: 27–36

    Google Scholar 

  • Burri PH (1984) Lung development and histogenesis. In: Fishman AP, Fischer AB (eds) Handbook of physiology; respiration, vol 4. American Physiological Society Press, New York, pp 1–46

    Google Scholar 

  • Burri PH (1985) Morphology and respiratory function of the alveolar unit. Int Arch Allergy Appl Immunol 76: 1–12

    Google Scholar 

  • Burri PH, Sehovic S (1979) The adaptive responses of the rat lung after bilobectomy. Am Rev Respir Dis 119: 769–777

    PubMed  CAS  Google Scholar 

  • Burri PH, Weibel ER (1971) Morphometric estimation of pulmonary diffusion capacity. II. Effect of PO2 on the growing lung. Adaptation of the growing rat lung to hypoxia and hyperoxia. Respir Physiol 11: 247–264

    PubMed  CAS  Google Scholar 

  • Bursell E (1970) An introduction to insect physiology. Academic Press, London

    Google Scholar 

  • Butler PJ (1991) Exercise in birds. J Exp Biol 160: 233–262

    Google Scholar 

  • Butler PJ, Metcalfe JD (1983) Control of respiration and circulation. In: Rankin JC, Pitcher TJ, Duggan R (eds) Control processes in fish physiology. Croom Helm, Beckenham, pp 41–65

    Google Scholar 

  • Butler PJ, Banzett RB, Fredberg JJ (1988) Inspiratory valving in avian bronchi: aerodynamic considerations. Respir Physiol 72: 241–256

    PubMed  CAS  Google Scholar 

  • Calder WA (1984) Size, function and life history. Harvard University Press, Cambridge, Mass

    Google Scholar 

  • Callahan PS (1972) The evolution of insects. Holliday House New York

    Google Scholar 

  • Cameron JN, Mecklenburg TA (1973) Aerial gas exchange in the coconut crab Birgus latro with some notes on Gecaroidea lalandii. Respir Physiol 19: 245–261

    PubMed  CAS  Google Scholar 

  • Carey FG (1982) Warm fish. In: Taylor CR, Johansen K, Bolis L (eds) Animal physiology. Cambridge University Press, Cambridge, pp 216–233

    Google Scholar 

  • Carey FG, Teal JM (1969) Regulation of body temperature by the blue-fin tuna. Comp Biochem Physiol 28: 205–213

    PubMed  CAS  Google Scholar 

  • Carey FG, Teal JM, Kanwisher JW, Lawson KD (1971) Warm-blooded fish. Am Zool 11: 135–145

    Google Scholar 

  • Carter GS (1931) Aquatic and aerial respiration in animals. Biol Rev 6: 1–35

    Google Scholar 

  • Carter GS (1935) The fresh waters of the rain forest areas of British Guiana. J Linn Soc (Lond) 39: 147–193

    Google Scholar 

  • Carter GS (1955) The papyrus swamps of Uganda. Heifer, Cambridge

    Google Scholar 

  • Carter GS (1957) Air-breathing. In: Brown ME (ed) The physiology of fishes. Academic Press, London, pp 65–79

    Google Scholar 

  • Carter GS (1967) Structure and habitat in vertebrate evolution. Washington University Press, Seattle

    Google Scholar 

  • Carter GS, Beadle LC (1931) The fauna of swamps of Paraguayan Chaco in relation to its environment. II. Respiratory adaptations in the fishes J Linn Soc (Lond) 37: 327–368

    Google Scholar 

  • Casey TM, May ML, Morgan KR (1985) Flight energetics of euglossine bees in relation to morphology and wing stroke frequency. J Exp Biol 116: 271–289

    Google Scholar 

  • Cheatum EP (1934) Limnological investigations on respiration, annual migratory cycle and other related phenomena in freshwater pulmonate snails. Trans Am Microsc Soc 53: 348–407

    CAS  Google Scholar 

  • Cloud P (1974) Evolution of ecosystems. Am Sci 62: 54–66

    CAS  Google Scholar 

  • Coates CW (1937) Slowly the lungfish gives up its secrets. Bull NY Zool Soc 40: 25–34

    Google Scholar 

  • Collip JP (1921) A further study of the respiratory processes in M ya arenaria and other marine Mollusca. J Biol Chem 49: 297–310

    CAS  Google Scholar 

  • Constantinopol M, Jones JH, Weibel ER, Taylor CR, Lindholm A, Karas RH (1989) Oxygen transport during exercise in large mammals. II. Oxygen uptake by the pulmonary gas exchanger. J Appl Physiol 67: 871–878

    PubMed  CAS  Google Scholar 

  • Cope ED (1894) On the lungs of Ophidia. Am Philos Soc 33: 217–224

    Google Scholar 

  • Copeland DE (1968) Fine structure of salt and water uptake in the land crab Gecarcinus lateralis. Am Zool 8: 417–432

    Google Scholar 

  • Coulson RA, Hernandez T (1980) Oxygen debt in reptiles: relationship between the time required for repayment and metabolic rate. Comp Biochem Physiol 65A: 453–457

    Google Scholar 

  • Courtice GP (1981) The effect of temperature on bimodal gas exchange and the respiratory ratio in the water dragon, Physognathus lesuerii. Comp Biochem Physiol 68A: 437–441

    Google Scholar 

  • Cowles RG (1947) Comments by readers. Science 105: 282

    Google Scholar 

  • Cragg P (1975) Respiration and body weight in the reptilian genus Lacerta: a physiological, anatomical and morphometric study. PhD Thesis, University of Bristol

    Google Scholar 

  • Crank WD, Gallanger RR (1978) Theory of gas exchange in the avian parabronchus. Respir Physiol 35: 9–25

    PubMed  CAS  Google Scholar 

  • Crapo JD, Barry BE, Gehr P, Bachofen M, Weibel ER (1982) Cell number and cell characteristics of the normal human lung. Am Rev Respir Dis 125: 332–337

    Google Scholar 

  • Crawford EC, Gatz RN, Magnussen H, Perry SF (1976) Lung volumes, pulmonary blood flow and carbon monoxide diffusing capacity of turtles. J Comp Physiol 107: 169–178

    Google Scholar 

  • Crompton AW, Taylor CR, Jagger AJ (1978) Evolution of homoiotherm in mammals. Nature 272: 333–336

    PubMed  CAS  Google Scholar 

  • Czopek J (1955) Vascularization of the respiratory surfaces in Leiopema hochstetteri (Fitzinger) and Xenopus laevis (Daudin). Acta Anat 25: 346–360

    PubMed  CAS  Google Scholar 

  • Czopek J (1959) Vascularization of respiratory surfaces in Salamandra salamandra L. in ontogeny. Bull Acad Pol Sci B 7: 473–477

    Google Scholar 

  • Czopek J (1961) Vascularization of the respiratory surfaces of some Plethodontidae. Zool Pol 11: 131–148

    Google Scholar 

  • Czopek J (1962a) Vascularization of respiratory surfaces in some caudata. Copeia 1962: 576–587

    Google Scholar 

  • Czopek J (1962b) Smooth muscle in the lungs of some urodeles. Nature 193: 798

    Google Scholar 

  • Czopek J (1965) Quantitative studies on the morphology of respiratory surfaces in amphibians. Acta Anat 62: 296–323

    PubMed  CAS  Google Scholar 

  • Dahr E (1927) Studien über die Respiration der Landpulmonaten. Lunds Univ Aarsskr 23: 1–20

    Google Scholar 

  • Das BK (1927) The bionomics of certain air-breathing fishes of India together with an account of the development of the air-breathing organs. Philos Trans R Soc Lond B 216: 183–219

    Google Scholar 

  • Das BK (1940) Nature and causes of evolution and adaptation of the air-breathing fishes. Proc 27th Indian Sci Congr 2: 215–260

    Google Scholar 

  • Davenport J (1985) Environmental stress and behavioural adaptation. Croom Helm, London

    Google Scholar 

  • Dawson TJ, Hubert AJ (1970) Standard metabolism, body temperature and surface areas of Australian marsupials. Am J Physiol 218: 1233–1238

    PubMed  CAS  Google Scholar 

  • de Beer G (1954) Archeopteryx lithographica. Br Mus Nat Hist, London

    Google Scholar 

  • de Fur PL, McMahon BR (1978) Respiratory responses of Cancer productus to air exposure. Am Zool 18: 605A

    Google Scholar 

  • Dehadrai PV (1962) Respiratory function of the swimbladder of Notopterus (Lacepede). Nature (Lond) 185: 929

    Google Scholar 

  • Dehadrai PV, Tripathi SD (1976) Environment and ecology of freshwater air-breathing teleosts. In: Hughes GM (ed) Respiration of amphibious vertebrates. Academic Press, London, pp 139–172

    Google Scholar 

  • Dejours P (1976) Water versus air as the respiratory media. In: Hughes GM (ed) Respiration of amphibious vertebrates. Academic Press, London, pp 1–15

    Google Scholar 

  • Dejours P (1979) Oxygen demand and gas exchange. In: Wood SC, Lenfant C (eds) Evolution of respiratory processes: a comparative approach. Dekker, New York, pp 1–49

    Google Scholar 

  • Dejours P (1988) Respiration in water and air. Elsevier, Amsterdam

    Google Scholar 

  • Dejours P, Garey WF, Rahn H (1970) Comparison of ventilatory and circulatory flow rates between animals in various physiological conditions. Respir Physiol 9: 108–117

    PubMed  CAS  Google Scholar 

  • Demon R (1927) Untersuchungen über die Atmung der Insekten. Z Biol 87: 8–22

    Google Scholar 

  • Denison RH (1941) The soft anatomy of Bothriolepis. J Palaeontol 15: 553–561

    Google Scholar 

  • de Villiers CJ, Hodgson C (1987) The structure of the secondary gills of Siphonaria capensis (Gastropoda; Pulmonata). J Molluscan Stud 53: 129–138

    Google Scholar 

  • Diaz H, Rodriguez G (1977) The branchial chamber in terrestrial crabs: a comparative study. Biol Bull Mar Biol Lab Woods Hole 153: 485–504

    Google Scholar 

  • Dormans JAMA (1985) The alveolar type III cell. Lung 163: 327–335

    PubMed  CAS  Google Scholar 

  • Dubach M (1981) Quantitative analysis of the respiratory system of the house sparrow, budgerigar, and hummingbird. Respir Physiol 46: 43–60

    PubMed  CAS  Google Scholar 

  • Dubale MS (1951) A comparative study of the extent of gill surface in some representative Indian fishes. J Univ Bombay 19: 90–101

    Google Scholar 

  • Dubale MS (1959) A comparative study of the oxygen carrying capacity of the blood in water and air-breathing teleosts. J Anim Morphol Physiol 6: 48–54

    CAS  Google Scholar 

  • Duncker HR (1971) The lung air sac system of birds. A contribution to the functional anatomy of the respiratory system. Ergeb Anat Entwicklungsgesch 45: 1–171

    Google Scholar 

  • Dunker HR (1972) Structure of avian lungs. Respir Physiol 14: 44–63

    Google Scholar 

  • Duncker HR (1973) Der quantitative Aufbau des Lungen-Luftsacksystems der Vögel. Verh Anat Ges 67: 197–204

    Google Scholar 

  • Duncker HR (1978a) Development of the avian respiratory systems. In: Piiper J (ed) Respiratory function in birds, adult and embryonic. Springer, Berlin Heidelberg New York, pp 260–273

    Google Scholar 

  • Duncker HR (1978b) General morphological principles of amniotic lungs. In: Piiper J (ed) Respiratory function in birds, adult and embryonic. Springer, Berlin Heidelberg New York, pp 1–15

    Google Scholar 

  • Duncker HR, Guntert MD (1985b) Morphometric analysis of the avian respiratory system. In: Duncker HR, Gleischer G (eds) Vertebrate morphology, Forsch Zool 3. Fischer, Stuttgart, pp 383–387

    Google Scholar 

  • Dunham DW, Gilchrist SL (1988) Behaviour. In: Burggren WW, McMahon BR (eds) Biology of the land crabs. Cambridge University Press, Cambridge, pp 97–138

    Google Scholar 

  • Dunn JF, Davison W, Maloiy GMO, Hochachka PW, Guppy M (1981) An ultrastructural and histochemical study of the axial musculature in the African lungfish. Cell Tissue Res 220: 599–609

    PubMed  CAS  Google Scholar 

  • Dunson WA (1986) Aquatic respiration in Trionyx spiniferus asper. Herpetologia 16: 277–283

    Google Scholar 

  • Edney EB (1960) Terrestrial adaptations. In: Waterman TH (ed) The physiology of Crustacea, vol 1. Academic Press, London, pp 367–393

    Google Scholar 

  • Edwards GA, Ruska H, de Harven E (1958) The fine structure of insect tracheoblasts, tracheae and tracheoles. Arch Biol 69: 351–369

    CAS  Google Scholar 

  • Else PL, Hubert AJ (1981) Comparison of the “mammal machine” and the “reptile machine energy production. Am J Physiol 240: R3 - R9

    PubMed  CAS  Google Scholar 

  • Else PL, Hubert AJ (1985a) An allometric comparison of the mitochondria of mammalian and reptilian tissues: the implications for the evolution of endothermy. J Comp Physiol B 156: 3–11

    PubMed  CAS  Google Scholar 

  • Else PL, Hubert AJ (1985b) Mammals: an allometric study of metabolism at tissue and mitochondrial level. Am J Physiol 248: R415–421

    PubMed  CAS  Google Scholar 

  • Emery SH, Szczepanski A (1986) Gill dimensions in pelagic elasmobranch fishes. Biol Bull 171: 441–449

    Google Scholar 

  • Emilio MG, Shelton G (1974) Gas exchange and its effect on blood gas concentrations in the amphibian, Xenopus laevis. J Exp Biol 60: 567–579

    PubMed  CAS  Google Scholar 

  • Eshky AA, Atkinson RJ, Taylor AC (1988) Effects of temperature on oxygen consumption and heart rate in the semiterrestrial crab Ocypode saratan ( Forskal ). Mar Behav Biol 13: 341–358

    Google Scholar 

  • Fange R (1953) The mechanism of gas transport in the euphysoclist swimbladder. Acta Physiol Scand (Suppl 30 ) 110: 1–33

    CAS  Google Scholar 

  • Fange R (1966) Physiology of the swimbladder. Physiol Rev 46: 299–322

    PubMed  CAS  Google Scholar 

  • Fange R (1976) Gas exchange in the swimbladder. In: Hughes GM (ed) Respiration of amphibious vertebrates. Academic Press, London, pp 189–211

    Google Scholar 

  • Fange R (1983) Gas exchange in fish swimbladder. Physiol Biochem Pharmacol 97: 111–158

    CAS  Google Scholar 

  • Farber J, Rahn H (1970) Gas exchange between air and water and the ventilation pattern in the electric eel. Respir Physiol 9: 151–161

    PubMed  CAS  Google Scholar 

  • Farber J, Tenney SM (1971) The pouch gas of the Virginia opossum (Didelphis virginiana). Respir Physiol 11: 335–345

    PubMed  CAS  Google Scholar 

  • Farhi L, Rahn H (1960) Dynamic changes in carbon dioxide stores. Anaesthesiology 21: 604–614

    CAS  Google Scholar 

  • Farley RD (1990) Regulation of air and blood flow through the booklungs of the desert scorpion, Paruroctonus mesaensis. Tissue Cell 22: 547–569

    PubMed  CAS  Google Scholar 

  • Farrelly CA, Greenaway P (1987) The morphology and vasculature of the lungs and gills of the soldier crab Mictyris longicarpus. J Morphol 193: 285–304

    Google Scholar 

  • Farrelly CA, Greenaway P (1992) Morphology and ultrastructure of the gills of the terrestrial crabs (Crustacea, Gecarcinidae and Grapsidae ): Adaptations for air-breathing. Zoomorphology 112: 39–49

    Google Scholar 

  • Fedde MR (1980) Structure and gas flow pattern in the avian respiratory system. Poult Sci 59: 2642–2653

    PubMed  CAS  Google Scholar 

  • Fedde MR, Orr JA, Shams H, Scheid P (1989) Cardiopulmonary function in exercising bar-headed geese during normoxia and hypoxia. Respir Physiol 77: 239–262

    PubMed  CAS  Google Scholar 

  • Fincke T, Paul R (1989) Book lung function in arachnids. III. The function and control of the spiracles. J Comp Physiol 159B: 433–441

    Google Scholar 

  • Fish GR (1956) Some aspects of the respiration of six species of fish from Uganda. J Exp Biol 33: 186–195

    CAS  Google Scholar 

  • Fishman AP, Pack AI, Delany RG, Galante RJ (1986) Estivation in Protopterus. J Morphol (Suppl 1 ) 1: 237–248

    Google Scholar 

  • Florkin M, Jeuniaux C (1974) Haemolymph composition. In: Rockestein M (ed) The physiology of insects, vol V, 2nd edn. Academic Press, New York, pp 256–307

    Google Scholar 

  • Foelix RF (1979) Biologie der Spinnen. Thieme, Stuttgart

    Google Scholar 

  • Foelix RF (1982) Biology of spiders. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Fons R, Sicart R (1976) Contribution à la connaissance du métabolisme énergétique chez deux Crocidurinae: Suncus etruscus (Savi, 1822 ) et Crocidura russula (Hermann, 1780), Insectivora, Soricidae. Mammalia 40: 229–311

    Google Scholar 

  • Fox HM (1921) Methods of studying the respiratory exchange in small aquatic organisms, with particular reference to the use of flagellates as an indicator for oxygen consumption. J Gen Physiol 3: 365–573

    Google Scholar 

  • Fraenkel G, Hertford GVB (1938) The respiration of insects through the skin. J Exp Biol 15: 266–280

    CAS  Google Scholar 

  • Fuhrmann O (1912) Le genre Typhionectes. Mem Soc Neuchatel Sci Nat 5: 112–138

    Google Scholar 

  • Full RJ (1987) Locomotion energetics of the ghost crab. I. Metabolic cost and endurance. J Exp Biol 130: 137–153

    Google Scholar 

  • Fung YB, Sobin S (1977) Pulmonary alveolar blood flow. In: West JB (ed) Bioengineering aspects of the lung. Dekker, New York, pp 267–359

    Google Scholar 

  • Gans C (1970) Strategy and sequence in the evolution of the external exchangers of ectothermal vertebrates. Forma Functio 3: 61–104

    Google Scholar 

  • Gans C (1971) Respiration in early tetrapods — the frog is a red herring. Evolution (Lancaster-Pa) 24: 723–734

    Google Scholar 

  • Gans C (1976) Ventilatory mechanisms and problems in some amphibious aspiration-breathers (Chelydra, Caiman-Reptilia). In: Hughes GM (ed) Respiration of amphibious vertebrates. Academic Press, London, pp 357–374

    Google Scholar 

  • Gans C (1978) Ventilation mechanisms: problems in evaluating the transition to birds. In: Piiper J (ed) Respiratory function in birds, adult and embryonic. Springer, Berlin Heidelberg New York, pp 16–22

    Google Scholar 

  • Gans C (1979) Momentarily excessive construction as the basis for protoadaptation. Evolution 33: 227–233

    Google Scholar 

  • Gans C, Northcutt RG (1983) Neural crest and the origin of vertebrates: a new head. Science 220: 268–274

    PubMed  CAS  Google Scholar 

  • Garland T, Huey RB (1987) Testing symmorphosis: Does structure match functional requirements? Evolution 41: 1404–1409

    Google Scholar 

  • Gatten RE (1974) Effects of temperature and activity on aerobic and anaerobic metabolism and heart rate in turtles Pseudemys scripta and Terrapene ornata. Comp Biochem Physiol 48A: 619–648

    Google Scholar 

  • Gatten RE (1987) Activity metabolism of anuran amphibians: tolerance to dehydration. Physiol Zool 60: 576–585

    CAS  Google Scholar 

  • Gatz RN, Crawford EC, Piiper J (1974) Respiratory properties of the blood of a lungless and gill-less salamander Desmognathus fuscus. Respir Physiol 20: 33–41

    PubMed  CAS  Google Scholar 

  • Gatz RN, Crawford EC, Piiper J (1975) Kinetics of inert gas equilibration in an exclusively skin-breathing salamander, Desmognathus fuscus. Respir Physiol 24: 15–29

    PubMed  CAS  Google Scholar 

  • Gee JH (1976) Buoyancy and aerial respiration: factors influencing the evolution of reduced swimbladder volume of some Central American catfishes (Trichomycteridae, Callichthyidae, Loricariidae, Astroblepidae). Can J Zool 54: 1030–1037

    PubMed  CAS  Google Scholar 

  • Geelhaar A, Weibel ER (1971) Morphometric estimation of pulmonary diffusing capacity. III. The effect of increased oxygen consumption in Japanese waltzing mice. Respir Physiol 11: 354–366

    PubMed  CAS  Google Scholar 

  • Gehlbach FR, Gordon R, Jordon JB (1973) Aestivation of salamander, Siren intermedia. Am Midl Nat 89: 455–463

    Google Scholar 

  • Gehr P, Crapo JD (1988) Morphometric analysis of the gas exchange region of the lung. In: Gardner DE, Crap JD, Massaro EJ (eds) Toxicology of the lung. Raven Press, New York, pp 1–42

    Google Scholar 

  • Gehr P, Erni H (1980) Morphometric estimation of pulmonary diffusion capacity in two horse lungs. Respir Physiol 41: 199–210

    PubMed  CAS  Google Scholar 

  • Gehr P, Bachofen, M, Weibel ER (1978) The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respir Physiol 32: 121–140

    PubMed  CAS  Google Scholar 

  • Gehr P, Sehovic S, Burri PH, Claasen H, Weibel ER (1980) The lung of shrews: morphometric estimation of diffusion capacity. Respir Physiol 40: 33–47

    PubMed  CAS  Google Scholar 

  • Gehr P, Mwangi DK, Amman A, Maloiy GMO, Taylor CR, Weibel ER (1981) Design of the mammalian respiratory system. V. Scaling morphometric pulmonary diffusing capacity to body mass: wild and domestic animals. Respir Physiol 44: 61–86

    PubMed  CAS  Google Scholar 

  • George JC, Shah RV (1956) Comparative morphology of the lung in snakes with remarks on the evolution of the lung in reptiles. J Anim Morphol Physiol 3: 1–7

    Google Scholar 

  • George JC, Shah RV (1965) Evolution of air sacs in Sauropsida. J Anim Morphol Physiol (Bombay) 12: 255–263

    Google Scholar 

  • Ghiretti F (1966) Respiration. In: Wilbur KM, Yonge CM (eds) Physiology of Mollusca, vol 2. Academic Press, New York, pp 175–298

    Google Scholar 

  • Ghiretti F, Ghiretti M (1975) Respiration. In: Fretter VV, Peake J (eds) Pulmonates, vol V. Academic Press, London, pp 33–52

    Google Scholar 

  • Girgis S (1961) Aquatic respiration in the common Nile turtle, Trionyx triunguis (Forskal). Comp Biochem Physiol 3: 206–217

    PubMed  CAS  Google Scholar 

  • Glass ML, Johansen K (1981) Pulmonary diffusing capacity in reptiles (relations to temperature and oxygen uptake). J Comp Physiol 107: 169–178

    Google Scholar 

  • Glass ML, Wood SC (1983) Gas exchange control of breathing in reptiles. Physiol Rev 63: 232–260

    PubMed  CAS  Google Scholar 

  • Gleeson TT (1991) Patterns of metabolic recovery from exercise in amphibians and reptiles. J Exp Biol 160: 187–207

    Google Scholar 

  • Gomez DM (1965) A physical mathematical study of lung function in normal subject and in patients with obstructive pulmonary disease. Med Thorac 22: 275–294

    PubMed  CAS  Google Scholar 

  • Goncalves AA, Sawaya P (1978) Oxygen uptake by Typhlonectes compressicaudatus related to body weight. Comp Biochem Physiol 61A: 141–143

    Google Scholar 

  • Goniakowska-Witalinska L (1973) Metabolism, resistance to hypotonic solutions and ultrastructure of erythrocytes of five amphibian species. Acta Biol (Cracov) 16: 113–134

    Google Scholar 

  • Goniakowska-Witalinska L (1978) Ultrastructure and morphometric study of the lung of the European salamander, Salamandra salamandra L. Cell Tissue Res 191: 343–356

    PubMed  CAS  Google Scholar 

  • Goniakowska-Witalinska L (1980a) Ultrastructural and morphometric changes in the lung of newt Triturus cristatus carnifex Laur during ontogeny. J Anat 130: 571–585

    PubMed  CAS  Google Scholar 

  • Goniakowska-Witalinska L (1980b) Scanning and transmission electron microscopic study of the lung of the newt, Triturus alpestris Laur. Cell Tissue Res 205: 133–145

    PubMed  CAS  Google Scholar 

  • Goniakowska-Witalinska L (1982) Development of the larval lung of Salamandra salamandra L. Anat Embryol 164: 113–137

    PubMed  CAS  Google Scholar 

  • Goniakowska-Witalinska L (1985) The structure of the lung of the tree frog Hyla arborea L. In: Duncker HR, Fleischer G (eds) Vertebrate morphology. Fischer, Giessen, pp 375–377

    Google Scholar 

  • Goniakowska-Witalinska L (1986) Lung of the tree frog, Hyla arborea L. A scanning and transmission electron microscopic study. Anat Embryol 174: 379–389

    PubMed  CAS  Google Scholar 

  • Gordon MS, Boetius I, Evans DH, McCarthey R, Oglesby LC (1969) Aspects of the physiology of terrestrial life in amphibious fishes. I. The mudskipper Periophthalmus sobrinus. J Exp Biol 50: 141–149

    Google Scholar 

  • Gordon MS, Gabaldon DJ, Yip AYW (1985) Exploratory observations on the microhabitat selection within the intertidal zone by the Chinese mudskipper Periophthalmus cantonensis. Mar Biol 85: 209–215

    Google Scholar 

  • Gould SJ, Lewontin RC (1979) The spandrels of San Macro and the Panglossian paradigm: a critique of adaptationist programme. Proc R Soc Lond B 205: 581–598

    PubMed  CAS  Google Scholar 

  • Graham JB (1973) Terrestrial life of the amphibious fish Mnierpes macrocephalus. Mar Biol 37: 83–91

    Google Scholar 

  • Graham JB (1974) Aquatic respiration in the sea-snake Pelamis platurus. Respir Physiol 21: 1–7

    PubMed  CAS  Google Scholar 

  • Graham JB (1976) Respiratory adaptations of marine air breathing fishes. In: Hughes GM (ed) Respiration of amphibious vertebrates. Academic Press, London, pp 165–187

    Google Scholar 

  • Graham JB (1983) The transition of air-breathing in fishes. II. Effects of hypoxia acclimation on the bimodal gas exchange of Ancistrus chagresi (Locariidae). J Exp Biol 102: 157–173

    Google Scholar 

  • Graham JB, Baird TA (1982) The transition to air-breathing in fishes. I. Environmental effects on the facultative air-breathing of Ancistrus chagresi and Hypostomus plecoatomus (Loricariidae). J Exp Biol 96: 53–67

    Google Scholar 

  • Graham JB, Baird TA (1984) The transition to air-breathing in fishes. III. Effects of body size and aquatic hypoxia on the aerial gas exchange in the swamp eel Synbranchus marmoratus. J Exp Biol 108: 357–375

    Google Scholar 

  • Graham JB, Kramer DL, Pineda E (1977) Respiration of the air-breathing fish Piabucina festae. J Comp Physiol 122B: 295–310

    Google Scholar 

  • Graham JB, Baird TA, Stockmann W (1987) The transition to air-breathing in fishes. IV. Impact of branchial specializations for air-breathing on the aquatic respiratory mechanisms and ventilatory costs of the swamp eel Synbranchus marmoratus. J Exp Biol 129: 83–106

    Google Scholar 

  • Gratz RK, Hutchison HV (1977) Energetics for activity in the diamond-back watersnake, Natrix rhombifera. Physiol Zool 50: 99–114

    CAS  Google Scholar 

  • Gratz RN, Crawford EC, Piiper J (1974) Metabolic and heart rate response of the plethodontid salamander Desmognathus fuscus to hypoxia. Respir Physiol 20: 43–49

    Google Scholar 

  • Gray IE (1954) Comparative study of the gill area of marine fishes. Biol Bull Mar Biol Lab (Woods Hole) 107: 219–225

    Google Scholar 

  • Gray IE (1957) A comparative study of the gill area of crabs. Biol Bull Mar Biol Lab (Woods Hole) 112: 34–42

    Google Scholar 

  • Green SL (1984) Ultrastructure and enervation of the swimbladder of Tetractenos glaber (Tetraodontidae). Cell Tissue Res 237: 277–284

    PubMed  CAS  Google Scholar 

  • Greenaway P (1984) The relative importance of the gills and lungs in the gas exchange of amphibious crabs of the genus Holthuisana. Aust J Zool 8: 355–392

    Google Scholar 

  • Greenaway P (1988) Ionic and water balance. In: Burggren WW, McMahon BR (eds) Biology of the land crabs. Cambridge University Press, Cambridge, pp 211–248

    Google Scholar 

  • Greenaway P, Farrelly C (1990) Vasculature of the gas exchange organs in air-breathing brachyurans. Physiol Zool 63: 117–139

    Google Scholar 

  • Greenaway P, Morris S, McMahon BR (1988) Adaptations to a terrestrial existence by the robber crab Birgus latro. II. In vivo respiratory gas exchange and transport. J Exp Biol 149: 493–509

    Google Scholar 

  • Greenwood PH (1986) The natural history of the African lungfishes. J Morphol (Suppl) 1: 163–179

    Google Scholar 

  • Gregor DS, Prior DJ (1986) Modification of cardiac activity in response to dehydration in the terrestrial slugs, Limax maximus. J Exp Biol 237: 185–190

    Google Scholar 

  • Grigg GC (1965a) Studies on the Queensland lungfish, Neoceratodus forsteri (Krefft). I. Anatomy, histology, and functioning of the lung. Aust J Zool 13: 243–253

    Google Scholar 

  • Grigg GC (1965b) Studies on the Queensland lungfish, Neoceratodus forsteri (Krefft). III. Aerial respiration in relation to habits. Aust J Zool 13: 413–421

    Google Scholar 

  • Guimond RV, Hutchison HV (1968) The effect of temperature and photoperiod on gas exchange in the leopard frog, Rana pipiens. Comp Biochem Physiol 27: 177–195

    Google Scholar 

  • Guimond RW, Hutchison HV (1972) Pulmonary, brachial and cutaneous gas exchange in the mud puppy, Necturus maculosus maculosus (Rafinesque). Comp Biochem Physiol 42A: 367–392

    Google Scholar 

  • Guimond RW, Hutchison HV (1973) Trimodal gas exchange in the large aquatic salamander Siren lacertina L. Comp Biochem Physiol 46A: 249–268

    CAS  Google Scholar 

  • Guimond RW, Hutchison HV (1976) Gas exchange of giant salamanders. In: Hughes GM (ed) Respiration in amphibious vertebrates. Academic Press, London, pp 313–338

    Google Scholar 

  • Gutman WF, Bonik K (1981) Kritische Evolutionstheorie. Gerstenberg, Hildesheim

    Google Scholar 

  • Hakim A, Munshi JSD, Hughes GM (1978) Morphometrics of the respiratory organs of the Indian green snake headed fish Channa punctata. J Zool (Lond) 184: 519–543

    Google Scholar 

  • Hallam JF, Dawson TJ, Holland RAB (1989) Gas exchange in the lung of a dasyurid marsupial: Morphometric estimation of diffusion capacity and blood oxygen uptake kinetics. Respir Physiol 77: 309–322

    PubMed  CAS  Google Scholar 

  • Hardley NF, Hill RD (1969) Oxygen consumption of the scorpion Centruroides sculpturatus. Comp Biochem Physiol 33: 51–72

    Google Scholar 

  • Harms JW (1932) Die Realisation von Genen and die konsekutive Adaptation. II. Birgus latro L. als Landkrebs and seine Beziehungen zu den Coenabiten. Z Wiss Zool 140: 167–290

    Google Scholar 

  • Hart JS, Roy OZ (1966) Respiratory and cardiac responses to flight in pigeons. Physiol Zool 39: 291–306

    Google Scholar 

  • Hartnool RG (1988) Evolution, systematics and geographic distribution. In: Burggren WW, McMahon BR (eds) Biology of land crabs. Cambridge University Press, New York, pp 6–54

    Google Scholar 

  • Harvey EN (1928) The oxygen consumption of luminous bacteria. J Gen Physiol 11: 469–475

    PubMed  CAS  Google Scholar 

  • Harvey HW (1960) The chemistry and fertility of sea waters. Cambridge University Press, London

    Google Scholar 

  • Hastings RH, Powell FL (1986) Physiological dead space and effective parabronchial ventilation in ducks. J Appl Physiol 60: 85–91

    PubMed  CAS  Google Scholar 

  • Hazelhoff EH (1939) Über die Ausnutzung des Sauerstoffs bei verschiedenen Wassertieren. Z Vgl Physiol 26: 306: 327

    Google Scholar 

  • Heath JE, Heath M (1982) Energetics of locomotion in endothermic insects. Annu Rev Physiol 44: 133–143

    PubMed  CAS  Google Scholar 

  • Heinrich B (1977) Why have some animals evolved to regulate a high body temperature. Am Nat 111: 623–640

    Google Scholar 

  • Heinrich B (1981) Insect thermoregulation. Wiley, New York

    Google Scholar 

  • Heinrich B (1982) Thermoregulation in endothermic insects. Science 185: 747–756

    Google Scholar 

  • Heinrich B, Bartholomew GA (1972) Temperature control in flying moths. Sci Am 226: 71–77

    PubMed  CAS  Google Scholar 

  • Heisler N (1982) Intracellular and extracellular acid-base regulation in the tropical freshwater teleost fish Synbranchus marmoratus in response to transition from water-breathing to air-breathing. J Exp Biol 99: 9–28

    PubMed  CAS  Google Scholar 

  • Henk WG, Haldiman JT (1990) Microanatomy of the lung of the bowhead whale Balaena mysticetus. Anat Rec 226: 187–197

    PubMed  CAS  Google Scholar 

  • Herreid CF (1980) Hypoxia in invertebrates. Comp Biochem Physiol 67A: 311–320

    Google Scholar 

  • Herreid CF, Full RJ (1988) Energetics and locomotion. In: Burggren WW, McMahon BR (eds) Biology of the land crabs. Cambridge University Press, Cambridge, pp 333–377

    Google Scholar 

  • Herreid CF, Lee LW, Spampata R (1981) How do spiders breathe? Am Zool 21: 917

    Google Scholar 

  • Herrnkind WF (1983) Movement patterns and orientation. In: Vernberg FJ, Vernberg WB (eds) Biology of Crustacea, vol 7. Academic Press, London, pp 41–105

    Google Scholar 

  • Heusner AA (1982) Energy metabolism and body size. I. Is the 0.75 mass exponent of Kleiber’s equation a statistical artifact? Respir Physiol 48: 1–12

    PubMed  CAS  Google Scholar 

  • Heusner AA (1983) Body size, energy metabolism and the lung. J Appl Physiol 54: 867–873

    PubMed  CAS  Google Scholar 

  • Hexter SH (1982) Lung book microstructure in Tegenaria sp. Bull Br Arachnol Soc 5: 323–326

    Google Scholar 

  • Hill DE (1977) Some observations on the physiology of living Lyssomanes viridis which should apply to the Araneae in general. Peckhamia 1: 41–44

    Google Scholar 

  • Hillman SS (1987a) Dehydrational effects of cardiovascular and metabolic capacity of two amphibians. Physiol Zool 60: 608–613

    Google Scholar 

  • Hillman SS (1987b) The roles of oxygen delivery and electrolyte levels in the dehydrational death of Xenopus laevis. J Comp Physiol 128: 169–178

    Google Scholar 

  • Hillman SS, Withers PC, Hedrick MS, Kimmel PB (1985) The effects of erythrocythemia on blood viscosity, maximal systemic oxygen transport capacity and maximal rates of oxygen consumption in an amphibian. J Comp Physiol 155: 577–581

    CAS  Google Scholar 

  • Hills BA, Hughes GM, Koyama T (1982) Oxygenation and deoxygenation kinetics of red cells in isolated lamellae of fish. J Exp Biol 98: 269–275

    PubMed  CAS  Google Scholar 

  • Hinton HE (1966) Plastron respiration in marine insects. Nature 209: 200–221

    Google Scholar 

  • Hlastala MP, Standaert TA, Pierson DJ, Luchtel DL (1985) The matching of ventilation and perfusion in the lung of the tegu lizard Tupinambis nigropunctus. Respir Physiol 60: 277–294

    PubMed  CAS  Google Scholar 

  • Hochachka PW (1979) Cell metabolism, air-breathing, and the origins of endothermy. In: Wood SC, Lenfant C (eds) Evolution of respiratory processes: a comparative approach. Dekker, New York, pp 253–288

    Google Scholar 

  • Hochachka PW, Guppy M (1987) Metabolic arrest and the control of biological time. Harvard University Press, Cambridge (Mass)

    Google Scholar 

  • Hochachka PW, Fields J, Mustafa T (1973) Animal life without oxygen: basic biochemical mechanisms. Am Zool 13: 543–555

    CAS  Google Scholar 

  • Hodge AJ (1955) Studies on the structure of muscle. III. Phase contrast and electron microscopy of Dipteran flight muscle. J Biophys Biochem Cytol 1: 361–380

    PubMed  CAS  Google Scholar 

  • Holeton GF (1970) Oxygen uptake and circulation by a haemoglobinless Antarctic fish (Chaenocephalus aceratus Lonnberg) compared with 3 red-blooded Antarctic fish. Comp Biochem Physiol 34: 457–471

    PubMed  CAS  Google Scholar 

  • Hora SL (1922) Structural modifications in the fish. Q Rev Biol 21: 46–58

    Google Scholar 

  • Hora SL (1933) Respiration in fishes. J Bombay Nat Hist Soc 36: 538–560

    Google Scholar 

  • Hora SL (1935) Physiology, bionomics and evolution of the air-breathing fishes of India. Trans Natl Inst Sci India 1: 1–16

    Google Scholar 

  • Howell BJ (1970) Acid-base balance in transition from water to air-breathing. Fed Proc 29: 1130–1134

    PubMed  CAS  Google Scholar 

  • Hubert AJ (1978) The evolution of energy metabolism in mammals In: Schmidt-Nielsen K, Bolls L, Taylor CR (eds) Comparative physiology: primitive mammals. Cambridge University Press, Cambridge, pp 13–46

    Google Scholar 

  • Hughes GM (1966a) Dimensions of fish gills in relation to their function. J Exp Biol 45: 177–195

    PubMed  CAS  Google Scholar 

  • Hughes GM (1966b) Evolution between air and water. In: de Reuck AVS, Porter R (eds) CIBA Foundation Symposium on development of the lung. Churchill, London, pp 64–80

    Google Scholar 

  • Hughes GM (1967) Experiments on the respiration of the trigger fish (Balistes capriscus). Experientia 23: 1077

    PubMed  CAS  Google Scholar 

  • Hughes GM (1970) Ultrastructure of the air breathing organs of some lower vertebrates. Proc 17th Int Congr Electr Microsc (Grenoble) 3: 599

    Google Scholar 

  • Hughes GM (1972a) Distribution of oxygen tensions in the blood and water along the secondary lamella of icefish. J Exp Biol 56: 481–492

    PubMed  CAS  Google Scholar 

  • Hughes GM (1972b) Morphometrics of fish gills. Respir Physiol 14: 1–26

    PubMed  CAS  Google Scholar 

  • Hughes GM (1973) Ultrastructure of the lung of Neoceratodus and Lepidosiren in relation to the lung of the vertebrates. Folia Morphol (Prague) 21: 155–161

    CAS  Google Scholar 

  • Hughes GM (1978) Some features of gas transfer in fish. Bull Inst Math Appl 14: 39–43

    Google Scholar 

  • Hughes GM (1980) Ultrastructure and morphometry of the gills of Latimeria chalumnae and a comparison with the gills of associated fishes. Proc R Soc Lond B 208: 309–328

    Google Scholar 

  • Hughes GM (1981) Fish gills — past, present and future. Biol Bull India 3: 69–87

    Google Scholar 

  • Hughes GM (1984) General anatomy of the gills. In: Randall DJ (ed) Fish physiology, vol XA. Academic Press, London, pp 1–72

    Google Scholar 

  • Hughes GM, Hills BA (1971) Oxygen tension distribution in water and blood at the secondary lamella of the dogfish gill. J Exp Biol 55: 399–408

    PubMed  CAS  Google Scholar 

  • Hughes GM, Iwai T (1978) A morphometric study of the gills in some Pacific deep sea fishes. J Zool (Lond) 184: 155–170

    Google Scholar 

  • Hughes GM, Morgan M (1973) The structure of fish gills in relation to their respiratory function. Biol Rev 48: 419–475

    Google Scholar 

  • Hughes GM, Munshi JSD (1968) Fine structure of the respiratory surfaces of an air-breathing fish, the climbing perch A. testudineus (Bloch). Nature 219: 1382–1384

    PubMed  CAS  Google Scholar 

  • Hughes GM, Munshi JSD (1973a) Fine structure of the respiratory organs of the climbing perch Anabas testudineus (Pisces: Anabantidae). J Zool (Lond ) 170: 201–225

    Google Scholar 

  • Hughes GM, Munshi JSD (1973b) Nature of the air-breathing organs of the Indian fishes Channa, Amphipnous, Clarias, and Saccobranchus as shown by electron microscopy. J Zool (Lond) 170: 245–270

    Google Scholar 

  • Hughes GM, Singh BR (1970) Respiration in air-breathing fish the climbing perch Anabas testudineus (Bloch). I. Oxygen uptake and carbon dioxide release into air and water. J Exp Biol 53: 265–280

    Google Scholar 

  • Hughes GM, Singh BN (1971) Gas-exchange with air and water in an air-breathing catfish Saccobranchus fossilis. J Exp Biol 55: 667–682

    PubMed  CAS  Google Scholar 

  • Hughes GM, Vergara GA (1978) Static pressure-volume curves for the lung of the frog (Rana pipiens). J Exp Biol 76: 149–165

    PubMed  CAS  Google Scholar 

  • Hughes GM, Weibel ER (1976) Morphometry of fish lungs. In: Hughes GM (ed) Respiration of amphibious vertebrates. Academic Press, London, pp 213–232

    Google Scholar 

  • Hughes GM, Weibel ER (1978) Visualization of layers lining the lung of the South American lungfish (Lepidosiren paradoxa) and a comparison with the frog and rat. Tissue Cell 10: 343–353

    PubMed  CAS  Google Scholar 

  • Hughes GM, Wright DE (1970) A comparative study of the ultrastructure of the water-blood pathway in the secondary lamellae of teleost and elasmobranch fishes — benthic forms. Z Zellforsch Mikrosk Anat 104: 478–493

    PubMed  CAS  Google Scholar 

  • Hughes GM, Knights B, Scammell CA (1969) The distribution of oxygen partial pressure and hydrostatic pressure changes within the branchial chambers in relation to gill ventilation of the shore crab, Carcinus maenas L. J Exp Biol 51: 203–220

    Google Scholar 

  • Hughes GM, Dube SC, Munshi JSD (1973) Surface area of the respiratory organs of the climbing perch, Anabas testudineus ( Pisces: Anabantidae). J Zool (Lond ) 170: 227–243

    Google Scholar 

  • Hughes GM, Singh BR, Guha G, Dube SC, Munshi JSD (1974a) Respiratory surface area of an air-breathing siluroid fish Saccobranchus (= Heteropneustes) fossilis in relation to body size. J Zool (Lond) 172: 215–232

    Google Scholar 

  • Hughes GM, Singh BR, Thakur RN, Munshi JSD (1974b) Areas of the air-breathing surfaces of Amphipnous cuchia ( Ham ). Proc Indian Natl Sci Acad 40: 379–392

    Google Scholar 

  • Hunter WR (1953) The condition of the mantle cavity in two pulmonate snails in Loch Lomond. Proc R Soc Edinb 65B: 143–165

    Google Scholar 

  • Hutchison VH (1968) Relation of body size and surface area to gas exchange in anurans. Physiol Zool 41: 65–85

    Google Scholar 

  • Hutchison VH, Dowling HG, Vinegar A (1966) Thermoregulation in a brooding female Indian python, Python morulus bivittatus. Science 151: 694–696

    PubMed  CAS  Google Scholar 

  • Hutchison VH, Whitford WG, Kohl M (1968) Relation of body size and surface area to gas exchange in anurans. Physiol Zool 41: 65–85

    Google Scholar 

  • Hyman LH (1967) The invertebrates, vol XI. Mollusca I. McGraw-Hill, New York

    Google Scholar 

  • Inger RF (1957) Ecological aspects of the origin of the tetrapods. Evolution 11: 373–376

    Google Scholar 

  • Innes AJ, Taylor EW (1986) A functional analysis of pulmonary, cutaneous and brachial gas exchange in the Trinidad mountain crab: a comparison with other land crabs. J Physiol 373: 46 P

    Google Scholar 

  • Innes AJ, Forster ME, Jones MB, Mardsen ID, Taylor HH (1986) Bimodal respiration, water balance and acid base regulation in a high shore crab Cyclograpsus lavaux H. J Exp Mar Biol Ecol 100: 127–145

    Google Scholar 

  • Ishii Y, Hasegawas S, Uchiyama Y (1989) Twenty four hour variations in subcellular structures of the rat type II alveolar epithelial cell: A morphometric study at the electron microscopic level. Cell Tissue Res 256: 347–353

    PubMed  CAS  Google Scholar 

  • Ishimatsu A, Itazawa Y (1983) Difference in blood oxygen levels in the outflow vessels of the heart of an air-breathing fish Channa argus: do separate streams exist in a teleost heart? Comp Physiol 149: 435–440

    Google Scholar 

  • Ishimatsu A, Itazawa Y, Takeda T (1979) On the circulatory systems of the snake head, Channa maculata and C. argus with reference to bimodal breathing. Jpn J Ichthyol 26: 167–180

    Google Scholar 

  • Jakubowski M (1963) The structure and vascularization of the skin of the river bullhead (Cottus gobio L.) and black sea turbot (Rhombus aeoticus, Pall). Acta Biol Cracov Ser Zool 6: 159–175

    Google Scholar 

  • Jaskinski A (1973) Air-blood barrier in the respiratory intestine of the pond loach, Misgurnas fossalis. Acta Anat 86: 376–393

    Google Scholar 

  • Jesse MJ, Shub J, Fishman AP (1967) Lung and gill ventilation on the African lungfish. Respir Physiol 3: 267–287

    PubMed  CAS  Google Scholar 

  • Jeuken M (1957) A study of the respiration of Misgurnas fossilis (L.), the pond loach. Thesis, Univ Leiden

    Google Scholar 

  • Johansen K (1966) Air-breathing in the teleost Synbranchus marmoratus. Comp Biochem Physiol 18: 383–395

    PubMed  CAS  Google Scholar 

  • Johansen K (1970) Air-breathing in fish. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 4. Academic Press, New York, pp 361–411

    Google Scholar 

  • Johansen K (1982) Respiratory gas exchange of vertebrate gills. In: Houlihan DF, Rankin JC, Shuttleworth TJ (eds) Gills. Cambridge University Press, Cambridge, pp 99–128

    Google Scholar 

  • Johansen K, Hanson D (1968) Functional anatomy of the hearts of lungfishes and amphibians. Am Zool 8: 191–210

    PubMed  CAS  Google Scholar 

  • Johansen K, Lenfant K (1967) Respiratory function of in the South American lungfish, Lepidosiren paradoxa ( Fitz ). J Exp Biol 46: 205–218

    PubMed  CAS  Google Scholar 

  • Johansen K, Lenfant C (1968) Respiration in the African lungfish, Protopterus aethiopicus. II. Control of breathing. J Exp Biol 49: 453–468

    PubMed  CAS  Google Scholar 

  • Johansen K, Lenfant C (1972) A comparative approach to the adaptability of oxygen affinity. In: Roth M, Astrup P (eds) Oxygen affinity and red cell acid-base status. Proc A Benzon Symp IV. Munksgaard, Copenhagen, pp 750–780

    Google Scholar 

  • Johansen K, Reite O (1967) Effects of acetylcholine and biogenic amines on pulmonary smooth muscle in African lungfish P. aethiopicus. Acta Physiol Scand 71: 248–252

    PubMed  CAS  Google Scholar 

  • Johansen K, Reite OB (1968) Influence of acetylcholine and biogenic amines on pulmonary smooth muscle in the African lungfish, Protopterus aethiopicus. Acta Physiol Scand 71: 248–252

    Google Scholar 

  • Johansen K, Lenfant C, Griggs CG (1967) Respiratory control in the lungfish, Neoceratodus forsteri ( Krefft ). Comp Biochem Physiol 20: 835–854

    Google Scholar 

  • Johansen K, Lenfant C, Hanson D (1968a) Cardiovascular dynamics in the lungfishes. Z Vgl Physiol 59: 157–186

    Google Scholar 

  • Johansen K, Lenfant C, Schmidt-Nielsen K (1968b) Gas exchange and control of breathing in the electric eel Electrophorus electricus. Z Vgl Physiol 61: 137–163

    Google Scholar 

  • Johansen K, Hanson D, Lenfant C (1970) Respiration in primitive air-breather Amia calva. Respir Physiol 9: 162–174

    PubMed  CAS  Google Scholar 

  • Johansen K, Maloiy GMO, Lykebboe G (1975) A fish in extreme alkalinity. Respir Physiol 24: 159–162

    PubMed  CAS  Google Scholar 

  • Johansen K, Lomholt JP, Maloiy GMO (1976a) Importance of air and water breathing in relation to size of the African lungfish Protopterus amphibius ( Peters ). J Exp Biol 65: 395–399

    Google Scholar 

  • Johansen K, Lykkeboe G, Weber RE, Maloiy GMO (1976b) Respiratory properties of blood in awake and aestivating lungfish, Protopterus amphibius. Respir Physiol 27: 335–345

    PubMed  CAS  Google Scholar 

  • Johansen K, Lykkeboe G, Kornerup S, Maloiy GMO (1980) Temperature insensitive oxygen binding in blood of the tree frog Chiromantis petersi. J Comp Physiol 136: 71–76

    Google Scholar 

  • Johnston IA, Bernard LM, Maloiy GMO (1983) Aquatic and aerial respiration rates, muscle capillary supply and mitochondrial volume density in the air-breathing catfish (Glarias mossambicus) acclimated either to air or hypoxic water. J Exp Biol 105: 317–338

    Google Scholar 

  • Jones DR, Schwarzfeld T (1974) The oxygen cost to the metabolism and efficiency of breathing in trout Salmo gairdneri. Respir Physiol 21: 241–254

    PubMed  CAS  Google Scholar 

  • Jones HD (1983) The circulatory systems of gastropods and bivalves. In: Saleudin W, Wilbur K (eds) The Molluscs. Academic Press, New York, pp 189–238

    Google Scholar 

  • Jones JH, Grubb B, Schmidt-Nielsen K (1983) Panting in the emu causes arterial hypoxemia. Respir Physiol 54: 189–195

    PubMed  CAS  Google Scholar 

  • Jones JH, Effman P, Scheid P (1985) Lung volume changes during respiration in ducks. Respir Physiol 59: 15–25

    PubMed  CAS  Google Scholar 

  • Kardong KV (1972) Morphology of the respiratory system and its musculature in different snake genera (part I), Crotalus and Elaphe. Gegenbaurs Morphol Jahrb 117: 285–302

    PubMed  CAS  Google Scholar 

  • Kawashiro T, Scheid P (1975) Arterial blood gases in undisturbed resting birds: measurements in chicken and duck. Respir Physiol 23: 337–342

    PubMed  CAS  Google Scholar 

  • Kemp A (1986) The biology of the Australian lungfish, Neoceratodus forsteri (Krefft 1870). J Morphol (Suppl 1 ) 1: 181–198

    Google Scholar 

  • Kiley JP, Faraci FM, Fedde MR (1985) Gas exchange during exercise in hypoxic ducks. Respir Physiol 59: 105–115

    PubMed  CAS  Google Scholar 

  • King As (1966) Structural and functional aspects of the avian lung and its air-sacs. Int Rev Gen Exp Zool 2: 171–267

    Google Scholar 

  • King AS, Cowie AF (1969) The functional anatomy of the bronchial muscle of bird. J Anat 105: 323–326

    PubMed  CAS  Google Scholar 

  • King AS, Payne DC (1960) Does air circulate in the avian lung? Anat Rec 136: 223

    Google Scholar 

  • Kirsch R, Nonnotte G (1977) Cutaneous respiration in three freshwater teleosts. Respir Physiol 29: 339–354

    PubMed  CAS  Google Scholar 

  • Kjellesvig-Waering EN (1986) A restudy of the fossil scorpionida of the world. Palaeontogr Am 55: 1–287

    Google Scholar 

  • Klauber LM (1956) Rattlesnakes. University of California, Berkeley

    Google Scholar 

  • Kleiber M (1961) The fire of life. Wiley, New York

    Google Scholar 

  • Klemm RD, Gatz RM, Westfall TA, Fedde MR (1979) Microanatomy of the lung parenchyma of a tegu lizard Tupinambis nigropunctus. J Morphol 161: 257–280

    Google Scholar 

  • Klika E, Lelek A (1967) A contribution to the study of the lungs of Protopterus annectens and Polypterus senegalensis. Folia Morphol 15: 168–175

    CAS  Google Scholar 

  • Knight JH (1984) Studies on the biology and biochemistry of Pholas dactylus. PhD Thesis, University of London

    Google Scholar 

  • Knight JH, Knight R (1986) The blood vascular system of the gills of Pholas dactylus L. (Mollusca, Bivalvia, Eulamellibrachia). Philos Trans R Soc Lond B 313: 509–523

    Google Scholar 

  • Kooyman GL, Davis RW, Croxall JP, Costa DP (1982) Diving depths and energy requirements of king penguins. Science 217: 726–727

    PubMed  CAS  Google Scholar 

  • Koteja P (1986) Maximum cold induced oxygen consumption in the house-sparrow Passer domesticus L. Physiol Zool 59: 43–48

    Google Scholar 

  • Krogh A (1904) On the cutaneous and pulmonary respiration of the frog. Skand Arch Physiol 15: 328–419

    Google Scholar 

  • Krogh A (1919) The rate of diffusion of gases through animal tissues with some remarks on the coefficient of invasion. J Physiol (Lond) 52: 391–408

    CAS  Google Scholar 

  • Krogh A (1922a) Studien Über Tracheen Respiration, II. Über Gasdiffusion in den Tracheen. Pfluegers Archiv Gesamte Physiol Menschen Tiere 179: 97–112

    Google Scholar 

  • Krogh A (1922b) Studien Über der Tracheen Respiration, III. Die Kombination von mechanischer Ventilation mit Gasdiffusion nach Versuchen an Dytiscuslarven. Pfluegers Archiv Gesamte Physiol Menschen Tiere 179: 113–120

    Google Scholar 

  • Krogh A (1941) The comparative physiology of respiratory mechanics. University Pennsylvania Press, Philadelphia

    Google Scholar 

  • Krogh A (1959) The anatomy and physiology of the capillaries. Hafner, New York

    Google Scholar 

  • Kuethe DO (1988) Fluid mechanical valving of air-flow in bird lungs. J Exp Biol 136: 1–12

    PubMed  CAS  Google Scholar 

  • Lahiri S, Szidon JP, Fishman AP (1970) Potential respiratory and circulatory adjustments to hypoxia in the African lungfish. Fed Proc 29: 1141–1148

    PubMed  CAS  Google Scholar 

  • Lasiewski RC (1963) The energetic cost of small size in hummingbirds. Proc XIII Int Ornithol Congr 10: 1095–1103

    Google Scholar 

  • Lasiewski RC, Calder WR (1967) A re-examination of the relation between standard metabolic rate and body weight in birds. Condor 69: 13–23

    Google Scholar 

  • Lasiewski RC, Calder WA (1971) A preliminary allometric analysis of respiratory variables in resting birds. Respir Physiol 11: 152–166

    PubMed  CAS  Google Scholar 

  • Lasiewski RC, Dawson WR (1967) A re-examination of the relationship between standard metabolic rate and body weight in birds. Condor 69: 12–23

    Google Scholar 

  • Lauder G, Liem K (1983) The evolution and interrelationships of the actinopterygian fishes. Bull Mus Comp Zool 150: 95–197

    Google Scholar 

  • Laurent P (1982) Structure of vertebrate gills. In: Houlihan DF, Rankin JC, Shuttleworth TJ (eds) Gills. Cambridge University Press, Cambridge, pp 25–43

    Google Scholar 

  • Laurent P, Perry SF (1991) Environmental effects on fish gill morphology. Physiol Zool 64: 4–25

    Google Scholar 

  • Laybourne RC (1974) Collision between a vulture and an aircraft at an altitude of 37000 ft. Wilson Bull 86: 461–462

    Google Scholar 

  • Lechner AJ (1985) Pulmonary design in a microchiroptera bat Pipistrellus pipistrellus during hibernation. Respir Physiol 59: 301–312

    PubMed  CAS  Google Scholar 

  • Lechner AJ, Banchero N (1980) Lung morphometry in guinea pigs acclimated to cold during growth. J Appl Physiol Respir Environ Excercise Physiol 48: 886–891

    CAS  Google Scholar 

  • Lenfant C, Johansen K (1966) Respiratory function in the elasmobranch Squalus suckleyi G. Respir Physiol 1: 13–29

    PubMed  CAS  Google Scholar 

  • Lenfant C, Johansen K (1967) Respiratory adaptations in selected amphibians. Respir Physiol 2: 247–260

    PubMed  CAS  Google Scholar 

  • Lenfant C, Johansen K (1968) Respiration in an African lungfish, Protopterus aethiopicus: respiratory properties of blood and normal patterns of breathing and gas exchange. J Exp Biol 49: 437–457

    PubMed  CAS  Google Scholar 

  • Lenfant C, Johansen K, Grigg GC (1966) Respiratory properties of blood and pattern of gas exchange in the lungfish Neoceratodous forsteri ( Krefft ). Respir Physiol 2: 1–21

    PubMed  CAS  Google Scholar 

  • Lenfant C, Johansen K, Hanson D (1970) Bimodal gas exchange and ventilation-perfusion relationship in lower vertebrates. Fed Proc 29: 1124–1129

    PubMed  CAS  Google Scholar 

  • Levi HW (1967) Adaptations of respiratory systems of spiders. Evolution 21: 571–583

    Google Scholar 

  • Lewis SV, Potter IC (1982) A light and electron microscope study of the gills of the lampreys (Geotria australis) with particular reference to the water-blood pathway. J Zool (Lond) 198: 157–176

    Google Scholar 

  • Lewontin RG (1979) Fitness, survival and optimality. In: Horn DH, Mitchell R, Stairs GR (eds) Analysis of ecological systems. Ohio University Press, Columbus, pp 3–21

    Google Scholar 

  • Liem KF (1967) Functional morphology of the integumentary, respiratory and digestive systems of synbranchoid fish Monopterus albus. Copeia 2: 375–380

    Google Scholar 

  • Liem KF (1980) Air ventilation in advanced teleosts: Biomechanical and evolutionary aspects. In: Ali MA (ed) Environmental physiology of fishes. Plenum Press, London, pp 57–91

    Google Scholar 

  • Liem KF (1981) Larvae of air-breathing fishes as counter-current flow devices in hypoxic environments. Science 211: 1177–1179

    PubMed  CAS  Google Scholar 

  • Liem KF (1984) The muscular basis of aquatic and aerial ventilation in the air-breathing teleost fish Channa. J Exp Biol 113: 1–18

    Google Scholar 

  • Lillywhite HB (1987) Temperature, energetics and physiological ecology. In: Seigel RA, Novak SS, Collins JT (eds) Snakes: Ecology and evolutionary biology. Macmillan, New York, pp 422–477

    Google Scholar 

  • Lindstedt SL (1984) Pulmonary transit time and diffusing capacity in mammals. Am J Physiol 246: 384–388

    Google Scholar 

  • Lindstedt SL, Calder WA (1981) Body size, physiological time and longevity of homeothermic animals. Q Rev Biol 56: 1–16

    Google Scholar 

  • Linzen B, Gallowitz P (1975) Enzyme activity patterns in muscles of the lycosid spider Cupiennius salaei. J Comp Physiol 143: 331–338

    Google Scholar 

  • Locke MJ (1958a) The structure of insect trachea. Q J Microsc Sci 98: 487–492

    Google Scholar 

  • Locke MJ (1958b) Coordination of growth in the tracheal system of insects. Q J Microsc Sci 99: 373–391

    Google Scholar 

  • Locke MJ (1958c) The formation of tracheae and tracheoles in Rhodnius prolixus. Q J Microsc Sci 99: 29–46

    Google Scholar 

  • Lomholt JP, Johansen K (1979) Hypoxia acclimation in carp-How it affects O2 uptake, ventilation, and O2 extraction from water. Physiol Zool 52: 38–49

    Google Scholar 

  • Lomholt JP, Johansen K, Maloiy GMO (1975) Is aestivating lungfish the first vertebrate with suctional-breathing. Nature (Lond) 257: 787–788

    Google Scholar 

  • Longworth KE, Jones JH, Bicudo JEPW, Taylor CR, Weibel ER (1989) High rate of oxygen consumption in exercising foxes: large P02 difference drives diffusion across the lung. Respir Physiol 77: 263–276

    PubMed  CAS  Google Scholar 

  • Loudon C (1989) Tracheal hypertrophy in mealworms: design and plasticity in oxygen supply systems. J Exp Biol 147: 217–235

    Google Scholar 

  • Loveridge JP (1970) Observations on nitrogenous excretion and water relations of Chiromantis xerapherina (Amphibia, Anura). Arnoldia 5: 1–6

    Google Scholar 

  • Loveridge JP (1976) Strategies of water conservation in the Southern African frogs. Zool Mr 11: 319–333

    Google Scholar 

  • Lovtrup S (1977) The phylogeny of vertebrata. Wiley, London

    Google Scholar 

  • Low WP, Ip YK, Lane DJ (1990) A comparative study of the gill morphology of the mudskippers–Periophthalmus chrysospilos, Boleophthalmus boddaerti and Periophthalmodon schlosseri. Zool Sci 7: 29–38

    Google Scholar 

  • Luchtel DL, Kardong KV (1981) Ultrastructure of the lung of the rattlesnake, Crotalus viridis oreganus. J Morphol 169: 29–47

    Google Scholar 

  • Macchin J (1974) Water relationships. In: Fretter VV, Peake J (eds) Pulmonates, vol V. Academic Press, London, pp 105–163

    Google Scholar 

  • Mackay AR, Gelperin A (1972) Pharmacology and reflex responsiveness of the heart in the giant garden slug Limax maximus. Comp Biochem Physiol 43A: 877–896

    CAS  Google Scholar 

  • Macklem PT, Bouvent P, Scheid P (1979) Measurements of the distensibility of the para-bronchi in duck lungs. Respir Physiol 38: 23–35

    PubMed  CAS  Google Scholar 

  • MacMillen RE (1983) Adaptive physiology of heteromyid rodents. Great Basin Nat Mem 7: 65–76

    Google Scholar 

  • Maina JN (1982a) A scanning electron microscopic study of the air and blood capillaries of the lung of the domestic fowl Gallus domesticus. Experientia 35: 614–616

    Google Scholar 

  • Maina JN (1982b) A comparison of the lungs of two species of birds of different exercise capacities. J Anat 134: 604–605

    Google Scholar 

  • Manna JN (1984) Morphometrics of the avian lung. 3. The structural design of the passerine lung. Respir Physiol 55: 291–309

    Google Scholar 

  • Manna JN (1985a) The comparative morphometry of the respiratory organs of the East African air-breathing fish: the catfish Clarias mossambicus and the lungfish Protopterus aethiopicus. In: Karson B, Warren R, Wasen J (eds) Proc IV Europ Sympo Stereol Chalmers Univ Press, Goteborg, pp 101–104

    Google Scholar 

  • Manna JN (1985b) A scanning and transmission electron microscopic study of the bat lung. J Zool (Lond) 205: 19–27

    Google Scholar 

  • Manna JN (1986) The structural design of the bat lung. Myotis 23: 71–77

    Google Scholar 

  • Manna JN (1987a) The morphology of the lung of the African lungfish, Protopterus aethiopicus: a scanning electron microscopic study. Cell Tissue Res 250: 191–196

    Google Scholar 

  • Manna JN (1987b) The morphology and morphometry of the adult normal baboon lung (Papio anubis). J Anat 150: 229–245

    Google Scholar 

  • Manna IN (1987c) Morphometrics of the avian lung. 4. The structural design of the charadriiform lung. Respir Physiol 68: 99–119

    Google Scholar 

  • Manna IN (1988a) Scanning electron microscopic study of the spatial organization of the air and blood conducting components of the avian lung Gallus gallus domesticus. Anat Rec 222: 145–153

    Google Scholar 

  • Maim JN (1988b) The morphology and morphometry of the normal lung of the adult vervet monkey Cercopithecus aethiops. Am J Anat 183: 258–267

    Google Scholar 

  • Manna JN (1989a) The morphology of a tropical terrestrial slug Trichotoxon copleyi - Verdicourt (Mollusca: Gastropoda: Pulmonata). A scanning and transmission electron microscopic study. J Zool (Lond) 217: 355–366

    Google Scholar 

  • Manna JN (1989b) A scanning and transmission electron microscopic study of the tracheal-air sac system in a grasshopper (Chrotogonus senegalensis) Kraus–(Orthoptera: Acrididae: Pygomorphinae) Anat Rec 223: 393–405

    Google Scholar 

  • Manna JN (1989c) The morphology of the lung of the East African tree frog Chiromantis petersi with observations on the skin and the buccal cavity as secondary gas exchange organs: a TEM and SEM study. J Anat 165: 29–43

    Google Scholar 

  • Maim JN (1989d) The morphology of the lung of the black mamba Dendroaspis polylepis (Reptilia: Ophidia: Elapidae): a scanning and transmission electron microscopic study. J Anat 167: 31–46

    Google Scholar 

  • Manna JN (1989e) The morphometry of the avian lung. In: King AS, McLelland J (eds) Form and function in birds, vol 4. Academic Press, London, pp 307–368

    Google Scholar 

  • Manna JN (1990a) A study of the morphology of the gills of an extreme alkalinity and hyperosmotic adapted teleost Oreochromis alcalicus grahami (Boulenger) with particular emphasis on the ultrastructure of the chloride cells and their modifications with water dilution: a SEM and TEM study. Anat Embryol 181: 83–98

    Google Scholar 

  • Manna JN (1990b) The morphology of the gills of the freshwater crab Potamon niloticus–Ortman (Crustacea: Brachyura: Potamonidae): scanning and transmission electron microscopic study. J Zool (Lond) 221: 499–515

    Google Scholar 

  • Manna JN (1990c) The morphology and morphometry of the lung of the lesser bush-baby Galago senegalensis. J Anat 172: 129–144

    Google Scholar 

  • Manna JN (1991) A morphometric analysis of chloride cells in the gills of the teleosts Oreochromis alcalicus and Oreochromis niloticus and a description of presumptive area excreting cells in Oreochromis alcalicus. J Anat 175: 131–145

    Google Scholar 

  • Manna JN (1993) Perspectives on the structure and function in birds. In: Rosskopf W (ed) Petrak’s diseases of cage and aviary birds. Lea-Ferbiger, New York (in press)

    Google Scholar 

  • Manna JN, King AS (1982a) The thickness of the avian blood-gas barrier. Qualitative and quantitative observations. J Anat 134: 553–562

    Google Scholar 

  • Manna JN, King AS (1982b) Morphometrics of the avian lung. 2. The wild mallard (Anas platyrhynchos) and greylag goose (Anser anser). Respir Physiol 50: 299–313

    Google Scholar 

  • Manna JN, King AS (1984) The Structural functional correlation in the design of the bat lung: A morphometric study. J Exp Biol 111: 43–63

    Google Scholar 

  • Manna IN, King AS (1987) A morphometric study of the lung of a humboldt penguin (Spheniscus humboldti). Zentralblatt Veterinaermed C Anat Histol Embryol 16: 293–297

    Google Scholar 

  • Manna JN, King AS (1989) The lung of the emu, Dromaius novaehollandiae: a microscopic and morphometric study. J Anat 163: 67–74

    Google Scholar 

  • Manna JN, Maloiy GMO (1985) The morphometry of the lung of the lungfish (Protopterus aethiopicus): its structural-functional correlations. Proc R Soc (Lond) B 244: 399–420

    Google Scholar 

  • Maim JN, Maloiy GMO (1986) The morphology of the respiratory organs of the African air breathing catfish (Clarias mossambicus) (Peters): a light, and electron microscopic study, with morphometric observations. J Zool (Lond) 209: 421–445

    Google Scholar 

  • Maim JN, Maloiy GMO (1988) A scanning and transmission electron microscopic study of the lung of a caecilian Boulengerula taitanus. J Zool (Lond) 215: 739–751

    Google Scholar 

  • Manna JN, Nicholson T (1982) The morphometric diffusing capacity of a bat Epomophorus wahlbergi. J Physiol 325: 36–37

    Google Scholar 

  • Maim JN, Settle G (1982) Allometric comparison of some morphometric parameters of avian and mammalian lungs. J Physiol 330: 28

    Google Scholar 

  • Maim JN, King AS, King DZ (1982a) A morphometric analysis of the lungs of a species of bat. Respir Physiol 50: 1–11

    Google Scholar 

  • Manna JN, Abdalla MA, King AS (1982b) Light microscopic morphometry of the lungs of 19 avian species. Acta Anat 112: 264–270

    Google Scholar 

  • Manna JN, Howard CV, Scales L (1982e) The length densities and size distributions of the air and blood capillaries of the paleopulmo and neopulmo regions of the avian lung. Acta Stereol (Yugoslavica) 2: 101–107

    Google Scholar 

  • Maim JN, King AS, Settle G (1989a) An allometric study of the pulmonary morphometric parameters in birds, with mammalian comparison. Philos Trans R Soc (Lond) 326: 1–57

    Google Scholar 

  • Maim JN, Maloiy GMO, Warui CN, Njogu EK, Kokwaro ED (1989b) A scanning electron microscopic study of the morphology of the reptilian lung: the savanna monitor lizard (Varanus exanthematicus) and the pancake tortoise (Malacochersus tornieri). Anat Rec 224: 514–522

    Google Scholar 

  • Maim JN, Thomas SP, Hyde DM (1991) A morphometric study of bats of different size: correlations between structure and function of the chiropteran lung. Philos Trans R Soc Lond B 333: 31–50

    Google Scholar 

  • Maim JN, Maloiy GMO, Makanya AN (1992) The morphology and morphometry of two East African mole rats Tachyoryctes splendens and Heterocephalus glaber. Zoomorphology 112: 167–179

    Google Scholar 

  • Maitland DP (1986) Crabs that breath air with their legs — Scopimera and Dotilla. Nature 319: 493–495

    Google Scholar 

  • Maitland DP (1987) A highly complex invertebrate lung: the gill chambers of the soldier crab Mictyris longicarpus. Naturwissenschaften 74: 293–295

    Google Scholar 

  • Maitland DP (1990a) Carapace and branchial water circulation and water related behaviours in the semiphore crab Heloecius cordiformis (Decapoda: Brachura: Ocypode). Mar Biol 105: 275–286

    Google Scholar 

  • Maitland DP (1990b) Aerial respiration in the semiphore crab, Holoecius cordiformis, with or without branchial water. Comp Biochem Physiol 95A: 267–274

    Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature. Freeman, New York

    Google Scholar 

  • Mangum CP (1976) Primitive respiratory adaptations. In: Newell RC (ed) Adaptations to the environment: essays on the physiology of marine animals. Butterworth, London, pp 191–278

    Google Scholar 

  • Mangum CP (1982) The functions of gills in several groups of invertebrate animals. In: Houlihan DF, Rankin JC, Shuttleworth TJ (eds) Gills. Cambridge University Press, Cambridge, pp 77–97

    Google Scholar 

  • Marcus H (1937) Lungen. In: Bolk L, Goppert E, Kallius E, Lubosch W (eds) Handbuch der vergleichenden Anatomie der Wirbeltiere III. Urban Schwarzenberg, Berlin, pp 127–224

    Google Scholar 

  • Martin KM, Hutchison VH (1979) Ventilatory activity in Amphiuma tridactylum and Siren lacertina. J Herpetol 13: 427–434

    Google Scholar 

  • Mass JA (1939) Über die Atmung von Helix pomatia. Z Vgl Physiol 26: 605–610

    CAS  Google Scholar 

  • Maynard-Smith J (1978) Optimization theory in evolution. Annu Rev Ecol Syst 9: 31–56

    Google Scholar 

  • McCutcheon FH, Hall FG (1937) Haemoglobin in Amphibia. J Cell Comp Physiol 9: 191–197

    CAS  Google Scholar 

  • McDonald DG, Caudek V, Ellis R (1991) Gill design in fresh water fishes: interrelationships among gas exchange, ion regulation, and acid base regulation. Physiol Zool 64: 103–123

    Google Scholar 

  • McMahon BR (1981) Oxygen uptake and acid base balance during activity in decapod crustaceans. In: Harreid CF, Fortner CR (eds) Locomotion and energetics of arthropods. Plenum Press, New York, pp 299–335

    Google Scholar 

  • McMahon BR, Burggren WW (1979) Respiration and adaptation to the terrestrial habitation the land hermit crab Coenobita clypeatus. J Exp Biol 79: 265–281

    Google Scholar 

  • McMahon BR, Burggren WW (1981) Acid-base balance following temperature acclimation in land crabs. J Exp Biol 218: 45–52

    Google Scholar 

  • McMahon BR, Burggren WW (1988) Respiration. In: Burggren WW, McMahon BR (eds) Biolgy of the crabs. Cambridge University Press, Cambridge, pp 249–297

    Google Scholar 

  • McMahon BR, Wilkens JL (1984) Ventilation, perfusion and oxygen uptake. In: Mantel LH (ed) The biology of Crustacea, vol 5. Academic Press, New York, pp 289–372

    Google Scholar 

  • McMahon BR, McDonald DG, Wood CM (1979) Ventilation, oxygen uptake, and haemolymph oxygen transport following enforced exhaustive activity in the Dungenese crab Cancer magister. J Exp Biol 80: 271–285

    Google Scholar 

  • McNab B (1966) The metabolism of fossorial rodents: a study of convergence. Ecology 47: 712–733

    Google Scholar 

  • McNab B (1984) Physiological convergence amongst ant-eating and termite-eating mammals. J zool (Lond) 203: 485–510

    Google Scholar 

  • McNab B (1986a) Food habits, energetics, and the reproduction of marsupials. J Zool (Lond) 208: 595–614

    Google Scholar 

  • McNab B (1986b) The influence of food habits on the energetics of the eutherian mammals. Ecol Monogr 56: 1–19

    Google Scholar 

  • Meban C (1973) The pneumocytes in the lung of Xenopus laevis. J Anat 114: 235–244

    PubMed  CAS  Google Scholar 

  • Meban C (1980) Thicknesses of the air-blood barriers in vertebrate lungs. J Anat 131: 299–307

    PubMed  CAS  Google Scholar 

  • Meyer M, Burger RE, Scheid P, Piiper J (1977) Analyse des échanges gaseux dans les poumons des oiseaux. J Physiol (Paris) 73: 9A

    Google Scholar 

  • Milani A (1894) Beiträge zur Kenntnis der Reptilienlunge. II. Zool Jahrb Abt Anat Ontog Tiere 7: 545–592

    Google Scholar 

  • Mill PJ (1972) Respiration in the invertebrates. MacMillan St Martins Press, London

    Google Scholar 

  • Miller PL (1966) The supply of oxygen to the active flight muscles of some large beatles. J Exp Biol 45: 285–304

    PubMed  CAS  Google Scholar 

  • Miller PL (1974) Respiration-aerial gas transport. In: Rockstein M (ed) The physiology of insects, 2nd edn. Academic Press, New York, pp 346–402

    Google Scholar 

  • Milsom WK (1984) The interrelationship between pulmonary mechanics and spontaneous breathing pattern in the tokay lizard Gekko gecko. J Exp Biol 113: 203–214

    Google Scholar 

  • Milsom WK, Johansen K (1975) The effect of buoyancy induced lung volume changes on respiratory frequency in a chelonian (Caretta caretta). J Comp Physiol 98: 157–160

    Google Scholar 

  • Mitchell HA (1964) Investigation of the cave atmosphere of a Mexican bat colony. J Mammal 45: 568–577

    Google Scholar 

  • Moore Si (1976) Some spider organs as seen by the scanning electron microscope, with special reference to the book lung. Bull Br Arachnol Soc 3: 177–187

    Google Scholar 

  • Morberly WR (1968) The metabolic responses of the common iguana, Iguana iguana, to activity under restraint. Comp Biochem Physiol 27: 21–37

    Google Scholar 

  • Morris S, Taylor HH, Greenaway P (1991) Adaptations to a terrestrial existence by the robber crab Birgus latro. VII. The branchial chamber and its role in urine reprocessing. J Exp Biol 161: 315–331

    Google Scholar 

  • Morton JE (1958) Molluscs. Hutchinson University Library, London

    Google Scholar 

  • Moussa TA (1956) Physiology of the accessory respiratory organs of the teleost, Clarias lazera (C & V). J Exp Zool 136: 419–454

    Google Scholar 

  • Moussa TA (1957) Morphology of the accessory air-breathing organs of the teleost, Clarias lazera (C & V). J Morphol 98: 125–160

    Google Scholar 

  • Moy-Thomas JA (1971) Palaeozoic fishes, 2nd edn. Saunders, Philadelphia

    Google Scholar 

  • Muir BS, Hughes GM (1969) Gill dimensions for three species of tunny. J Exp Biol 51: 271–285

    Google Scholar 

  • Muir BS, Kendall JI (1968) Structural modifications in the gills of tunas and some oceanic fishes. Copeia 1968: 388–398

    Google Scholar 

  • Munshi JSD (1960) The structure of the gills of certain fresh water teleosts. Indian J Zootomy 1: 135–174

    Google Scholar 

  • Munshi JSD (1961a) On the accessory respiratory organs of Heteropneustes fossilis (Bloch). Proc R Soc Edinb B 68: 128–146

    Google Scholar 

  • Munshi JSD (1961b) The accessory respiratory organs of Clarias batrachus (Linn). J Morphol 109: 115–140

    PubMed  CAS  Google Scholar 

  • Munshi JSD (1968) The accessory respiratory organs of Anabas testudineus (Bloch) (Anabantidae, Pisces). Proc Linn Soc Lond (Zool) 179: 107–126

    Google Scholar 

  • Munshi JSD (1976) Gross and fine structure of the respiratory organs of air-breathing fishes. In: Hughes GM (ed) Respiration of amphibious vertebrates. Academic Press, London, pp 73–104

    Google Scholar 

  • Munshi JSD, Hughes GM (1986) Scanning electron microscopic study of the respiratory organs of juvenile and adult climbing perch Anabas testudineus. Jpn J Ichthyol 33: 39–45

    Google Scholar 

  • Munshi JSD, Singh BN (1968) On the respiratory organs of Amphipnous cuchia (Ham. Buch ). J Morphol 124: 423–444

    PubMed  CAS  Google Scholar 

  • Munshi JSD, Weibel ER, Gehr P, Hughes GM (1986) Structure of the respiratory air-sac of Heteropneustes fossilis (Bloch) (Heteropneustidae, Pisces): an electron microscope study. Proc Indian Natl Sci Acad 52: 703–713

    Google Scholar 

  • Munshi JSD, Olson KR, Ghosh TK, Ojha J (1990) Vasculature of the head and respiratory organs in an obligate air-breathing fish, the swamp eel Monopterus (= Amphipnous) cuchia. J Morphol 203: 181–201

    Google Scholar 

  • Mutungi G (1990) Histochemistry, innervation, capillary density, and mitochondrial volume of the red and white muscle fibers isolated from a lizard, Varanus exanthematicus. Can J Zool 68: 476–481

    CAS  Google Scholar 

  • Naggy KA, Odell DK, Seymour RS (1972). Temperature regulation by the inflorescence of Philodendron. Science 178: 1195–1197

    Google Scholar 

  • Neckvasil NP, Olson KR (1986) Extraction and metabolism of circulating catecholamines by trout gills. Am J Physiol 19: R526–531

    Google Scholar 

  • Newell RC (1976) Adaptations in intertidal life. In: Newell RC (ed) Adaptations to environment: essays on the physiology of marine animals. Butterworths, London, pp 1–82

    Google Scholar 

  • Newell RC, Courtney WAM (1965) Respiratory movements in Holothuria forskali Delle Chiaje. J Exp Biol 42: 45–57

    CAS  Google Scholar 

  • Nicoll PA (1954) The anatomy and behaviour of the vascular systems in Nereis virens and Nereis limbata. Biol Bull Mar Biol Lab (Woods Hole) 106: 69–82

    Google Scholar 

  • Nilsson S (1983) Autonomic nerve function in the vertebrates. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Noble GK (1925) The integumentally, pulmonary and cardiac modifications correlated with increased cutaneous respiration in the Amphibia: solution to the “hairly frog” problem. J Morphol 40: 341–416

    Google Scholar 

  • Noble GK (1929) The adaptive modifications of the arboreal tadpoles of Hoplophryne and torrent tadpoles of Staurois. Bull Am Mus Nat Hist 58: 291–334

    Google Scholar 

  • Noble GK (1931) The biology of Amphibia. McGraw-Hill, New York

    Google Scholar 

  • Ojha J, Munshi JSD (1974) Morphometric studies on the gill and skin dimensions in relation to body weight in freshwater mud-eel Macrognathus aculeatum ( Bloch ). Zool Anz (Jena) 193: 364–381

    Google Scholar 

  • Ojha J, Singh SK (1986) Scanning electron microscopy of the gills of a hill stream fish, Danio dangila (Ham). Arch Biol (Brux) 97: 455–467

    Google Scholar 

  • Okada Y, Ishiko S, Daido S, Kim J, Ikeda S (1962) Comparative morphology of the lung with special reference to the alveolar epithelial cells. I. lung of Amphibia. Acta Tuberc Jpn 11: 63–72

    PubMed  CAS  Google Scholar 

  • Olson KR (1981) Morphology and vascular anatomy of the gills of a primitive air-breathing fish, the bow-fin (Amia calva). Cell Tissue Res 218: 499–517

    PubMed  CAS  Google Scholar 

  • Olson KR, Munshi JSD, Ghosh TK, Ojha J (1986) Gill microcirculation of the air-breathing climbing perch, Anabas testudineus (Bloch): relationships with the accessory respiratory organs and systemic circulation. Am J Anat 176: 305–320

    PubMed  CAS  Google Scholar 

  • Olson KR, Munshi JSD, Ghosh TK, Ojha J (1990) Vascular organization of the head and respiratory organs of the air breathing catfish, Heteropneustes fossilis. J. Morphol 203: 165–179

    Google Scholar 

  • O’Mahoney P (1984) Heart rate of the land crab Gecarcinus lateralis during aquatic and aerial respiration. Comp Biochem Physiol 78A: 621–624

    Google Scholar 

  • Ostrom JH (1974) Archaeopteryx and the origin of flight. Q Rev Biol 49: 27–47

    Google Scholar 

  • Packard GC (1974) The evolution of air-breathing in Paleozoic gnathostome fishes. Evolution 28: 320–325

    Google Scholar 

  • Paiva M (1985) Theoretical studies of gas mixing in the lung. In: Engel LA, Paiva M (eds) Gas mixing and distribution in the lung. Dekker, New York, pp 221–285

    Google Scholar 

  • Parker HW (1940) The Percy Sladen Trust Expedition to Lake Titicaca, Amphibia Ser 3. Trans Linn Soc (Lond) 12: 203–216

    Google Scholar 

  • Pattie RE (1976) Lung surfactant in the evolutionary tree. In: Hughes GM (ed) Respiration of amphibious vertebrates. Academic Press, London, pp 233–255

    Google Scholar 

  • Pattie RE, Schock C, Creasey JM, Highes GM (1977) Surpellic films, lung surfactant, and their cellular origin in newt, caecilian and frog. J Zool (Lond) 182: 125–136

    Google Scholar 

  • Paul R, Fincke T (1989) Book lung function is arachnids. II. Carbon dioxide release and its relations to respiratory surface, water loss and heart frequency. J Comp Physiol 159B: 419–432

    Google Scholar 

  • Paul R, Fincke T, Linzen B (1987a) Respiration in tarantula Eurypelma californicum: the effects of hydraulic force generation. J Comp Physiol 158B: 673–687

    Google Scholar 

  • Paul R, Fincke T, Linzen B (1987b) Respiration in tarantula: evidence for diffusion lung. J Comp Physiol 157B: 209–217

    Google Scholar 

  • Paul R, Fincke T, Linzen B (1989) Book lung function in arachnids. I. Oxygen uptake and respiratory quotient during rest, activity and recovery-relations to gas transport in the haemolymph. J Comp Physiol 159B: 409–418

    Google Scholar 

  • Pearson OP, Pearson AK (1976) A stereological analysis of the ultrastructure of the lungs of wild mice living at low and high altitude. J Morphol 150: 359–368

    PubMed  CAS  Google Scholar 

  • Pelseneer P (1935) Essai d éthologie zoologique. Acad R Belg Cl Sci Publ Fond, Agathon Potter, pp 1–662

    Google Scholar 

  • Perry SF (1978) Quantitative anatomy of the lungs of the red-eared turtle, Pseudemys scripta elegans. Respir Physiol 35: 245–262

    PubMed  CAS  Google Scholar 

  • Perry SF (1981) Morphometric analysis of pulmonary structure: methods for evaluation of unicameral lungs. Microscopie 38: 278–293

    CAS  Google Scholar 

  • Perry SF (1983) Reptilian lungs: functional anatomy and evolution. Adv Anat Embryol Cell Biol, vol 79, Springer, Berlin Heidelberg New York, pp 1–81

    Google Scholar 

  • Perry SF (1988) Functional morphology of the lungs of the Nile crocodile Crocodylus niloticus: non-respiratory parameters. J Exp Biol 143: 99–117

    Google Scholar 

  • Perry SF (1989) Mainstreams in the evolution of vertebrate respiratory structures. In: King AS, McLelland J (eds) Form and function in birds, vol 4. Academic Press, London, pp 1–67

    Google Scholar 

  • Perry SF (1990) Recent advances and trends in the comparative morphometry of vertebrate gas exchange organs. In: Boutilier RG (ed) Advances in comparative and environmental physiology, vol 6. Springer, Berlin Heidelberg New York, pp 45–71

    Google Scholar 

  • Perry SF, Duncker HR (1978) Lung architecture, volume and static mechanics in five species of lizards. Respir physiol 34: 61–81

    PubMed  CAS  Google Scholar 

  • Perry SF, Duncker HR (1980) Interrelationship of static mechanical factors and anatomical structure in lung ventilation. J Comp Physiol 138: 321–334

    Google Scholar 

  • Perry SF, Bauer AM, Russel AP, Alston JT, Maloney JE (1989a) Lungs of the gecko Rhacodactylus leachianus (Reptilia: Gekkonidae): a correlative gross anatomical and light and electron microscopic study. J Morphol 199: 23–40

    PubMed  CAS  Google Scholar 

  • Perry SF, Darian-Smith C, Alston J, Limpas CJ, Maloney JE (1989b) Histological structure of the lungs of the loggerhead turtle, Caretta caretta, before and after hatching. Copeia 1989 (4): 1000–1010

    Google Scholar 

  • Peters HM (1978) On the mechanism of air-ventilation in anabantoids (Pisces: Toleostei). Zoomorphology 89: 93–124

    Google Scholar 

  • Peters RH (1983) The ecological implications of body size. Cambridge University Press, Cambridge (UK )

    Google Scholar 

  • Phleger CF, Saunders BS (1978) Swimbladder surfactants of Amazon air-breathing fishes. Can J Zool 56: 946–952

    CAS  Google Scholar 

  • Pickard WF (1974) Transitional regime diffusion and the structure of the insect tracheolar system. J Insect Physiol 20: 947–956

    PubMed  CAS  Google Scholar 

  • Piiper J (1985) Air-flow pathway in the avian respiratory tract. In: Nachtigall W (ed) Bird flight BIONA report 3. Fischer, Stuttgart, pp 235–349

    Google Scholar 

  • Piiper J, Scheid P (1972) Maximum gas transfer efficacy of models for fish gills, avian lungs and mammalian lungs. Respir Physiol 14: 115–124

    PubMed  CAS  Google Scholar 

  • Piiper J, Scheid P (1973) Gas exchange in avian lungs: models and experimental evidence. In: Bolis L, Schmidt-Nielsen K, Maddrell SHP (eds) Comparative physiology. Elsevier North-Holland, Amsterdam, pp 161–185

    Google Scholar 

  • Piiper J, Scheid P (1975) Gas transport efficiency of gills, lungs and skin: theory and experimental data. Respir Physiol 23: 209–221

    PubMed  CAS  Google Scholar 

  • Piiper J, Scheid P (1980) Blood-gas equilibration in lungs. In: West JB (ed) Pulmonary gas exchange, vol 3. Academic Press, New York, pp 131–171

    Google Scholar 

  • Piiper J, Schumann D (1967) Efficiency of O2 exchange in the gills of the dogfish, Scyliorhinus stellaris. Respir Physiol 2: 135–148

    Google Scholar 

  • Piiper J, Gatz RN, Crawford EC (1976) Gas transport in Desmognathus fuscus. In: Hughes GM (ed) Respiration in amphibious vertebrates. Academic Press, London, pp 339–356

    Google Scholar 

  • Pisam M, Rambourg A (1991) Mitochondria rich cells in the gill epithelium of teleost fishes: an ultrastructural approach. Int Rev Cytol 130: 191–232

    Google Scholar 

  • Poczopko P (1959) Changes in blood circulation in Rana escutenta L. while diving. Zool Pol 10: 29–43

    Google Scholar 

  • Pohunkova H (1967) The ultrastructure of the lung of the snail Helix pomatia. Folia Morphol 15: 250–257

    Google Scholar 

  • Pohunkova H (1969) Lung ultrastructure of the Arachnida-Arachnoidea. Folia Morphol (Prague) 17: 309–361

    CAS  Google Scholar 

  • Pohunkova H, Hughes GM (1985a) Structure of the lung of clawed toad (Xenopus laevis Daudin). Folia Morphol 23: 385–390

    Google Scholar 

  • Pohunkova H, Hughes GM (1985b) Ultrastructure of the lungs of the garter-snake. Folia Morphol 23: 254–258

    Google Scholar 

  • Portner HO, Heisler N, Grieshaber MK (1985) Oxygen consumption and mode of energy production in the intertidal worm Sipunculus nudus L.: definition and characterization of the critical PO2 for an oxyconformer. Respir Physiol 59: 361–377

    PubMed  CAS  Google Scholar 

  • Potter GE (1927) Respiratory function of swimbladder in Lepidosteus. J Exp Zool 49: 45–52

    Google Scholar 

  • Pough FH (1980) Blood oxygen transport and delivery in reptiles. Am Zool 31: 455–456

    Google Scholar 

  • Pough FH, Taigen TL, Stawart MM, Brussard PF (1983) Behavioural modification of evaporative water loss by a Puerto Rican frog. Ecology 60: 608–613

    Google Scholar 

  • Powell FL (1982) Diffusion in avain lungs. Fed Proc 41: 53–55

    Google Scholar 

  • Powell FL, Mazzone RW (1983) Morphometrics of rapidly frozen goose lungs. Respir Physiol 51: 319–332

    PubMed  CAS  Google Scholar 

  • Powell FL, Scheid P (1989) Physiology of gas exchange in the avian respiratory system. In: King AS, McLelland J (eds) Form and function in birds, vol 4. Academic Press, London, pp 393–437

    Google Scholar 

  • Powell FL, Fedde MR, Gratz RK, Scheid P (1978) Ventilatory responses to CO2 in birds. I. measurements in anaethetized duck. Respir Physiol 35: 349–359

    PubMed  CAS  Google Scholar 

  • Powers LW, Bliss DE (1983) Terrestrial adaptations. In: Vernberg FJ, Vernberg VB (eds) The biology of Crustacea, vol 8. Academic Press, New York, pp 271–331

    Google Scholar 

  • Prasad MS, Mishra AP, Singh BR (1982) Development of the air-breathing organs in Colisa fasciatus. Arch Ital Anat Embriol 87: 43–53

    Google Scholar 

  • Precht H (1939) Die Lungenatmung der Süsswasserpulmonaten. Z Vgl Physiol 26: 696–739

    CAS  Google Scholar 

  • Pringle JWS (1983) Insect flight. Carolina Biological Readers, Burlington, NC

    Google Scholar 

  • Prior DJ, Hume M, Varga D, Hess SD (1983) Physiological and behavioural aspects of water balance and respiratory function in terrestrial slug, Limax maximus. J Exp Biol 104: 111–127

    Google Scholar 

  • Qasim SZ, Qayyum A, Garg KK (1960) The measurement of carbon dioxide produced by bair-breathing fishes and evidence of respiratory function of accessory respiratory organs. Proc Indian Acad Sci 52: 19–26

    CAS  Google Scholar 

  • Raath MA (1985) The theropod Syntarsus and its bearing on the origin of birds. In: Hecht MK et al. (eds) The beginning of birds. Freunde des Jura Museums Eichstatt, Willibaldsburg, pp 219–227

    Google Scholar 

  • Rahn H, Howell BJ (1976) Bimodal gas exchange. In: Hughes GM (ed) Respiration of amphibious vertebrates. Academic Press, London, pp 271–285

    Google Scholar 

  • Rahn H, Paganelli CV (1968) Gas exchange in gas gills of diving insects. Respir Physiol 5: 145–164

    PubMed  CAS  Google Scholar 

  • Rahn H, Rahn KB, Howell BJ, Gans C, Tenney SM (1971) Air-breathing of the garfish (Lepisosteus osseus). Respir Physiol 11: 285–307

    PubMed  CAS  Google Scholar 

  • Randall DJ (1982) The control of respiration and circulation in fish during exercise and hypoxia. J Exp Biol 100: 275–288

    Google Scholar 

  • Randall DJ, Burggren WW, Farrell AP, Haswell MS (1981) The evolution of air-breathing vertebrates. Cambridge University Press, Cambridge

    Google Scholar 

  • Rannels DE, Rannels SR (1988) Compensatory growth of the lung following partial pneumonectomy. Exp Lung Res 14: 157–182

    PubMed  CAS  Google Scholar 

  • Raubal FR (1987) Gill surface area and its components in the yellow-fin bream, Acanthopagrus australis (Gunther) (Pisces: Sparidae). Aust J Zool 35: 25–34

    Google Scholar 

  • Ready NE (1983) Wing development in hemimetabolous insects. PhD Thesis, Univ California, Irvine

    Google Scholar 

  • Redmond JR (1955) The respiratory function of haemocyanin in Crustacea. J Cell Comp Physiol 46: 209–247

    CAS  Google Scholar 

  • Regal PJ (1985) Common sense reconstruction of the biology of fossils. In: Hecht MK et al. (eds) The beginnings of birds. Freunde des Jura Museums Eichstatt, Willibaldsburg, pp 67–74

    Google Scholar 

  • Richards AG, Anderson TF (1942) Further electron microscope studies on arthropod trachea. J NY Entomol Soc 50: 245–247

    Google Scholar 

  • Richards AG, Korda FH (1950) Studies on arthropod cuticle. IV. an electron microscope survey of the intima of arthropod tracheae. Ann Entomol Soc Am 43: 49–71

    CAS  Google Scholar 

  • Robin ED, Vester JW, Murdaugh HV, Millen JE (1964) Prolonged anaerobiosis in a vertebrate: anaerobic metabolism in the freshwater turtle. J Cell Comp Physiol 63: 287–297

    CAS  Google Scholar 

  • Rodl S (1987) Raster-and transmissionselektronenmikroskopische Untersuchungen an der Buchlunge des Kaiserskorpions Pandinus imperator. Diplomathesis, Univ Munich, Munich

    Google Scholar 

  • Romer AS (1946) The early evolution of fishes. Q Rev Biol 21: 33–69

    PubMed  CAS  Google Scholar 

  • Romer AS (1967) Major steps in vertebrate evolution. Science 158: 1629–1637

    PubMed  CAS  Google Scholar 

  • Romer AS (1970) The vertebrate body, 4th edn. Saunders, Philadelphia

    Google Scholar 

  • Romer AS (1972) Skin breathing — primary or secondary? Respir Physiol 14: 183–192

    PubMed  CAS  Google Scholar 

  • Rose FL, Zambernard P (1966) Cardiac glycogen depletion in Amphiuma means during induced anoxia. J Morphol 120: 391–396

    Google Scholar 

  • Rosen R (1968) Optimality principles in biology. Butterworths, London

    Google Scholar 

  • Rosen DE, Forey PL, Gardiner BG, Petterson C (1981) Lungfishes, tetrapods paleontology and plesiomorphology. Bull Am Mus Nat Hist 167: 159–276

    Google Scholar 

  • Ross LG (1978) The innervation of the resorptive structures in the swimbladder of a physoclist fish, Polachius virens (L). Comp Biochem Physiol 61C: 385–388

    Google Scholar 

  • Ruben J (1976) Aerobic and anaerobic metabolism during activity in snakes. J Comp Physiol 109: 147–157

    CAS  Google Scholar 

  • Rudd JT (1954) Vertebrates without erythrocytes and blood pigment. Nature (Lond) 173: 848–850

    Google Scholar 

  • Rudd JT (1965) The ice-fish. Sci Am 213: 108–114

    Google Scholar 

  • Runham NW, Hunter PJ (1970) Terrestrial slugs. Hutchinson University Library, London

    Google Scholar 

  • Rzoska J (1974) The Upper Nile swamps, a tropical wet land study. Freshwater Biol 4: 1–30

    Google Scholar 

  • Sacca R, Burggren WW (1982) Oxygen uptake in air and water in the air-breathing reed-fish Calamoichthyes calabaricus: role of skin, gills and lungs. J Exp Biol 97: 179–186

    PubMed  CAS  Google Scholar 

  • Satchell GH (1971) Circulation in fishes. In: Brain PW, Hughes GM, Salt G, Willmer EN (eds) Cambridge monographs in experimental biology 18. Cambridge University Press, Cambridge, pp 1–131

    Google Scholar 

  • Satchell GH (1976) The circulatory system of air-breathing fish. In: Hughes GM (ed) Respiration of amphibious vertebrates. Academic Press, London, pp 105–123

    Google Scholar 

  • Saunders RL (1962) The irrigation of the gills in fishes. 2. efficiency of oxygen uptake in relation to respiratory flow activity and concentrations of oxygen and carbon dioxide. Can J Zool 40: 817–862

    CAS  Google Scholar 

  • Saupe M (1940) Anatomie und Histologie der Schwimmblase des Feussbarsches (Perca fluviatilis) mit besonderer Berücksichtigung des Ovals. Z Zellforsch 30: 1–34

    Google Scholar 

  • Sawaya P (1946) Sobre abiologia de alguns peixes de respiracao aerea. Univ Sao Paulo Fac Filosof Cien Letras Zool 11: 225–286

    Google Scholar 

  • Saxena DB (1959) Extent of gill surface in teleost Rita rita. Proc 1st All India Congr Zool 105: 108–168

    Google Scholar 

  • Saxena DB (1960) On the asphyxiation and influence of CO2 on respiration of air-breathing fish, Heteropneustes fossilis and Clarias batrachus. J Zool (Lond) 12: 114–124

    Google Scholar 

  • Saxena DB (1962) A comparative study of the gill surface of the fresh water fishes, Lobeo rohita, Ophicephalus striatus and Anabas testudineus. Ichthyologica 1: 59–68

    Google Scholar 

  • Sexena DB (1963) A review of ecological studies and their importance in the physiology of air-breathing fishes. Ichthyologica 2: 116–128

    Google Scholar 

  • Scheid P (1978) Analysis of gas exchange between air capillaries and blood capillaries in avian lung. Respir Physiol 32: 27–49

    PubMed  CAS  Google Scholar 

  • Scheid P (1979) Mechanisms of gas exchange in birds. Rev Physiol Biochem Pharmacol 86: 137–186

    PubMed  CAS  Google Scholar 

  • Scheid P (1985) Gas exchange in the avian parabronchial lung. In: Nachtigall W (ed) Bird flight, BIONA report 3. Fischer, Stuttgart, pp 131–171

    Google Scholar 

  • Scheid P, Piiper J (1970) Analysis of gas exchange in the avian lung: theory and experiments in the domestic fowl. Respir Physiol 9: 246–262

    PubMed  CAS  Google Scholar 

  • Scheid P, Piiper J (1972) Cross current gas exchange in avian lungs: effects of reversed parabronchial air flow in ducks. Respir Physiol 16: 304–312

    PubMed  CAS  Google Scholar 

  • Scheid P, Piiper J (1989) Respiratory mechanics and air flow in birds. In: King AS, McLelland J (eds) Form and function in birds, vol 4. Academic Press, London, pp 369–391

    Google Scholar 

  • Scheid P, Hook C, Bridges CR (1981) Diffusion in gas exchange of insects. Fed Proc 41: 2143–2145

    Google Scholar 

  • Schidlowski M (1975) Archean atmosphere and evolution of the terrestrial O2 budget. In: Windley BF (ed) The early history of the earth. Wiley, London, pp 67–103

    Google Scholar 

  • Schlotte E (1932) Morphologie und Physiologie der Atmung bei wasser, schlammm-und landlebenden Gobiiformes. Z Wiss Zool 140: 1–113

    Google Scholar 

  • Schmalhausen II (1968) The origin of terrestrial vertebrates. Academic Press, London

    Google Scholar 

  • Schmidt PT (1942) A fish with feather-like gills. Copeia 1942: 98–100

    Google Scholar 

  • Schmidt-Nielsen K (1975) Recent advances in avian respiration. In: Peaker M (ed) Avian Physiology. Academic Press, London, pp 33–47

    Google Scholar 

  • Schmidt-Niesen K (1984) Scaling: Why is animal size so important. Cambridge University Press, Cambridge

    Google Scholar 

  • Scholander PF (1954) Secretion of gases against high pressures in the swimbladder of deep sea fishes. II. the rete mirabile. Biol Bull Mar Biol Lab (Woods Hole) 107: 247–259

    Google Scholar 

  • Schreider JP, Raabe OG (1981) Structure of the human respiratory acinus. Am J Anat 162: 221–232

    PubMed  CAS  Google Scholar 

  • Schuurmans-Stekhoven JH (1920) Über die Atmung der Schnecken Limax agrestis und Helix pomatia. Tijdscrned Dierk Vereen 18: 1–43

    Google Scholar 

  • Seed R (1983) Structural organization, adaptive radiation and classification of molluscs. In: Hochachka PW (ed) The Mollusca, vol 1. Academic Press, New York, pp 1–53

    Google Scholar 

  • Shafiq SA (1963) Electron microscopy of the development of tracheoles in Drosophila melanogaster. Q J Microsc Sci 104: 135–140

    Google Scholar 

  • Shams H, Scheid P (1989) Efficiency of parabronchial gas exchange in deep hypoxia: measurements in the resting duck. Respir Physiol 77: 135–146

    PubMed  CAS  Google Scholar 

  • Shelton G, Croghan PC (1988) Gas exchange and its control in steady state systems: the consequences of evolution from water to air-breathing in the vertebrates. Can J Zool 66: 109–123

    Google Scholar 

  • Shoemaker VH, Balding D, Raubal R, McClanahan LL (1972) Uricotelism and low evaporative water loss in a South American frog. Science 175: 1018–1020

    PubMed  CAS  Google Scholar 

  • Singh BN (1976) Balance between aquatic and aerial respiration. In: Hughes GM (ed) Respiration of amphibious vertebrates. Academic Press, London, pp 125–164

    Google Scholar 

  • Singh BN, Hughes GM (1971) Respiration of air-breathing catfish Clarias batrachus (Linn) J Exp Biol 55: 421–434

    PubMed  CAS  Google Scholar 

  • Singh BR, Thakur RN (1975) A histochemical study on the respiratory epithelium of an eel-fish, Amphipnous cuchia (Ham). Acta Histochem 54: 161–167

    PubMed  CAS  Google Scholar 

  • Singh BR, Sheel M, Mishra AP (1981) Development of the air-breathing organ in the catfish Anabas testudineus and the catfish Heteropneustes fossilis. Zool Anz 206: 215–226

    Google Scholar 

  • Singh BR, Mishra AP, Shed M, Singh I (1982a) Development of the air-breathing organ in the catfish C. batrachus (Linn). Zool Anz 208: 100–111

    Google Scholar 

  • Singh BR, Singh RP, Mishra AP (1982b) Development of the air-breathing organ in the snake headed fish, Channa punctatus ( Bloch ). Zool Anz 208: 428–439

    Google Scholar 

  • Singh BR, Mishra AP, Singh I (1984) Development of air breathing organ in the mud-eel Amphipnous cuchia ( Ham ). Zool Anz (Jena) 213: 395–407

    Google Scholar 

  • Singh BR, Prasad MS, Yadav AN (1991) The morphology of the respiratory epithelium of the air-breathing organ of the swamp-eel, Monopterus albus (Zuiew): a SEM study. Zool Anz 226: 27–32

    Google Scholar 

  • Smatresk NJ (1988) Control of the respiratory mode of air-breathing fishes. Can J Zool 148: 88–152

    Google Scholar 

  • Smith DG, Gannon BJ (1978) Selective control of brachial arch perfusion in an air-breathing Amazon fish Hoplerythrinus unitaeniatus. Can J Zool 56: 959–964

    Google Scholar 

  • Smith DG, Rapson NL (1977) Differences in pulmonary microvascular anatomy between Bufo marinus and Xenopus laevis. Cell Tissue Res 178: 1–15

    PubMed  CAS  Google Scholar 

  • Smith DS (1961) The structure of insect fibrillar flight muscle: a study made with special reference to membrane systems of the fiber. J Biophys Biochem Cytol 10: 123–158

    PubMed  CAS  Google Scholar 

  • Smith HW (1930) Metabolism of the lungfish, Protopterus aethiopicus. J Biol Chem 88: 97–130

    CAS  Google Scholar 

  • Smith RE (1956) Quantitative relations between liver mitochondria metabolism and total body weight in mammals. Ann NY Acad Sci 62: 403–422

    CAS  Google Scholar 

  • Smith SL (1982) Introduction to fish physiology. TFH, Neptune, NJ

    Google Scholar 

  • Solomon SE, Purton M (1984) The respiratory epithelium of the lung in the green turtle (Chelonia mydas). J Anat 139: 353–370

    PubMed  Google Scholar 

  • Spengel JW (1904) Ueber Schwimmblasen, Lungen and Kiementaschen der Wirbeltiere. Zool Jahrb (Suppl) 7: 727–749

    Google Scholar 

  • Staendaert T, Johansen K (1974) Cutaneous gas exchange in snakes. J Comp Physiol 89: 313–320

    Google Scholar 

  • Stahl WR (1967) Scaling of respiratory variables in mammals. J Appl Physiol 22: 453–460

    PubMed  CAS  Google Scholar 

  • Stark-Vancs V, Bell PB, Hutchison VH (1984) Morphological and physiological basis for pulmonary ventilation in Amphiuma tridactylum: an ultrastructural study. Cell Tissue Res 238: 1–12

    CAS  Google Scholar 

  • Steen JB (1963) The physiology of the swimbladder in the eel Anguilla vulgaris, III. the mechanisms of gas secretion. Acta Physiol Scand 59: 221–241

    PubMed  CAS  Google Scholar 

  • Steen JB (1971a) Comparative physiology of respiratory mechanics. Academic Press, New York

    Google Scholar 

  • Steen JB (1971b) The swimbladder as a hydrostatic organ. In: Hoar WS, Randall DJ (eds) Fish physiology. Academic Press, London, pp 414–440

    Google Scholar 

  • Steffensen JF, Lomholt JP, Johansen K (1981) The relative importance of skin oxygen uptake in the naturally buried plaice, Pleuronectes platessa, exposed to graded hypoxia. Respir Physiol 44: 269–276

    PubMed  CAS  Google Scholar 

  • Stevens ED (1972) Some aspects of gas exchange in tuna. J Exp Biol 56: 809–823

    Google Scholar 

  • Stevens ED, Holeton GF (1978) The partitioning of oxygen uptake from air and from water by the large obligate air-breathing teleost, piracucu (Arapaima gigas). Can J Zool 56: 974–976

    Google Scholar 

  • Stevens ED, Randall DJ (1967) Changes in gas compositions in blood and water during moderate swimming activity in rainbow trout. J Exp Biol 46: 329–337

    PubMed  CAS  Google Scholar 

  • Stinner JN (1982) Functional anatomy of the lung of the snake Pituophis melanoleucus. Am J Physiol 243: R251–257

    PubMed  CAS  Google Scholar 

  • Stinner JN, Shoemaker VH (1987) Cutaneous gas exchange and low evaporative water loss in the frogs Phyllomedusa sauvagei and Chiramantis xeraphelina. J Comp Physiol 157B: 423–427

    Google Scholar 

  • Stone PA, Dobie JL, Henry RP (1992a) Cutaneous surface area and bimodal respiration in soft-shelled turtles (Trionyx spiniferus), stinkpot (Sternotherus odoratus) and mud-turtles (Kinosternon subrubrum). Physiol Zool 65: 311–330

    Google Scholar 

  • Stone PA, Dobie JL, Henry RP (1992b) The effect of aquatic O2 levels on diving and ventilatory behaviour in soft-shelled (Trionyx spiniferus), stinkpot (Sternotherus odoratus) and mud-turtles (Kinosternon subrubrum). Physiol Zool 65: 331–345

    Google Scholar 

  • Storch V, Welsch U (1975) Über Bau and Funktion der Kiemen and Lungen von Ocypode ceratophthalma ( Decapoda: Crustacea). Mar Biol 29: 363–371

    Google Scholar 

  • Strazny F (1982) Morphometrisch bestimmte Sauerstoff-Diffusionskapazität and funktionelle Anatomie der Spinnenlungen in der Gattung Tegenaria. J Biophys Biochem Cytol 4: 475–478

    Google Scholar 

  • Strazny F, Perry SF (1984) Morphometric diffusion capacity and functional anatomy of the booklungs in the spider Tegenaria sp ( Agelenidae ). J Morphol 182: 339–354

    Google Scholar 

  • Strazny F, Perry SF (1987) Respiratory system: structure and function. In: Nentwig W (ed) Ecophysiology of spiders. Springer, Berlin Heidelberg New York, pp 78–94

    Google Scholar 

  • Swan H (1969) Metabolic torpor in Protopterus aethiopicus: An anti-metabolic agent from the brain. Am Nat 103: 247–258

    CAS  Google Scholar 

  • Szarski H (1962) The origin of the Amphibia. Q Rev Biol 37: 189–241

    Google Scholar 

  • Szarski H (1964) The structure of respiratory organs in relation to body size in Amphibia. Evolution 18: 118–126

    Google Scholar 

  • Szarslo H (1977) Sarcopterygii and the origin of the tetrapods. In: Hecht MK, Goody PC, Hecht BM (eds) Major patterns of vertebrate evolution. Plenum Press, New York, pp 517–544

    Google Scholar 

  • Tamura O, Moriyama T (1976) On the morphological feature of the gill of amphibious and air breathing fishes. Bull Fac Fish Nagasaki Univ 41: 1–8

    Google Scholar 

  • Tamura O, Morii H, Yuzuriha M (1976) Respiration of the amphibious fishes Periophthalmus cantonensis and Boleophthalmus chinensis in water and land. J Exp Biol 65: 97–107

    PubMed  CAS  Google Scholar 

  • Tappan H (1974) Molecular O2 evolution. In: Hayaishi O (ed) Molecular oxygen in biology. Elsevier, Amsterdam, pp 81–135

    Google Scholar 

  • Taylor CR, Weibel ER (1981) Design of the mammalian respiratory system. I. problem and strategy. Respir Physiol 44: 1–10

    PubMed  CAS  Google Scholar 

  • Taylor CR, Weibel ER, Karas RH, Hoppelar H (1989) Matching structures and functions in the respiratory system: allometric and adaptive variations in energy demand. In: Wood SC (ed) Comparative pulmonary physiology: current concepts. Dekker, New York, pp 27–65

    Google Scholar 

  • Taylor EW, Butler PJ (1978) Aquatic and aerial respiration in the shore crabs Carcinus maenas (L.), acclimated to 15 °C. J Comp Physiol 127: 315–323

    Google Scholar 

  • Taylor HH, Greenaway P (1979) The structure of the gills and lungs of the arid zone crab Holthuisana (= Austrothelphusa) transversa (Mertens), (Sundathelphusidae: Brachyura) including observations on arterial vessels within gills. J Zool (Lond) 189: 359–384

    Google Scholar 

  • Taylor HH, Greenaway P (1984) The role of gills and branchiostegites in gas exchange in bimodal-breathing crab Holthuisana transversa: evidence of a facultative change in the distribution of the respiratory circulation. J Exp Biol 11: 103–121

    Google Scholar 

  • Teal JM, Carey FG (1967) Skin respiration and oxygen debt in the mudskipper, Periophthalmus sobrinus. Copeia 1967: 677–679

    Google Scholar 

  • Tenney SM (1979) A synopsis of breathing mechanisms. In: Wood SC, Lenfant C (eds) Evolution of respiratory processes: a comparative approach. Dekker, New York, pp 51–106

    Google Scholar 

  • Tenney SM (1985) Oxygen supply and limiting oxygen pressures in an insect larva. Respir Physiol 60: 121–134

    PubMed  CAS  Google Scholar 

  • Tenney SM, Boggs DF (1985) Comparative mammalian respiratory control. In: Fishman AP (ed) Handbook of physiology: the respiratory system II, sect 3. American Physiological Society, Bethesda, Maryland, pp 833–855

    Google Scholar 

  • Tenney SM, Remmers JE (1963) Comparative morphology of the lung: diffusing area. Nature 197: 54–56

    PubMed  CAS  Google Scholar 

  • Tenney SM, Tenney JB (1970) Quantitative morphology of cold blooded lungs: Amphibia and Reptilia. Respir Physiol 9: 197–215

    PubMed  CAS  Google Scholar 

  • Tenney SM, Bartlett D, Farber JP, Remmers JE (1984) Mechanics of the respiratory cycle in the green turtle (Chelonia mydas). Respir Physiol 22: 361–368

    Google Scholar 

  • Thomas SP (1987) The physiology of bat flight. In: Fenton MB, Racey P, Rayner MV (eds) Recent advances in the study of bats. Cambridge University Press, Cambridge, pp 75–99

    Google Scholar 

  • Thorpe WH, Crisp DJ (1947) Studies on plastron respiration. II. the respiratory efficiency of the plastron in the Aphelocheirus. J Exp Biol 24: 270–303

    PubMed  CAS  Google Scholar 

  • Toews DP, Shelton G, Randall DJ (1971) Gas tension in the lungs and major blood vessels of the urodele amphibian, Amphiuma tridactylum. J Exp Biol 55: 47–61

    Google Scholar 

  • Torre-Bueno J (1978) Respiration during flight in birds. In: Piiper J (ed) Respiratory function in birds, adult and embryonic. Springer Berlin Heidelberg New York, pp 89–94

    Google Scholar 

  • Tucker VA (1972) Respiration during flight in birds. Respir Physiol 14: 75–82

    PubMed  CAS  Google Scholar 

  • Ultsch GR (1974) Gas exchange and metabolism in the Sirenidae (Amphibia: Caudata). I. Oxygen consumption of submerged sirenids as a function of body size and respiratory surface area. Comp Biochem Physiol 47A: 485–498

    CAS  Google Scholar 

  • Ultsch GR (1976) Ecophysiological studies of some metabolic and respiratory adaptations of sirenid salamanders. In: Hughes GM (ed) Respiration in amphibious vertebrates. Academic Press, London, pp 287–312

    Google Scholar 

  • Ultsch GR, Jackson DC (1982) Long term submergence at 3 °C of the turtle Chrysemys picta bellii, in normoxic and severely hypoxic water. I. Survival, gas exchange and acid base status. J Exp Biol 96: 11–28

    Google Scholar 

  • Ultsch GR, Herbert CV, Jackson DC (1984) The comparative physiology of diving in North American freshwater turtles. I. submergence tolerance, gas exchange, and acid-base balance. Physiol Zool 57: 620–631

    Google Scholar 

  • Valente D (1948) Mechanismo da respiracao de Trichodactylus petropolitanus (Goeldi). Bolm Fac Filos Cien Let (Zool) 13: 259–324

    Google Scholar 

  • van Dam L (1935) On the utilization of oxygen by Mya arenaria. J Exp Biol 12: 86–94

    Google Scholar 

  • van Dam L (1954) On the respiration in scallops (Lamellibrachia). Bio Bull Mar Biol Lab (Woods Hole) 107: 192–202

    Google Scholar 

  • Vellard J (1951) Adaptation des Batraciens a la vie a grande hauteur. Tray Inst Fr Etudes And 3: 88–114

    Google Scholar 

  • Verde MR (1951) The morphology and histology of the lung in snakes. J Univ Bombay 19: 79–89

    Google Scholar 

  • Vidyadaran MK, King AS, Kassim H (1987) Deficient anatomical capacity of oxygen uptake of developing lung of the female domestic fowl when compared with the red jungle fowl. Schweiz Arch Tierheilkol 129: 225–237

    CAS  Google Scholar 

  • Vidyadaran MK, King AS, Kassim H (1990) Quantitative comparisons of lung structure of adult domestic fowl and red jungle fowl, with reference to broiler ascites. Avian Pathol 19: 51–58

    PubMed  CAS  Google Scholar 

  • Vinegar A, Hutchison VH (1965) Pulmonary and cutaneous gas exchange in the green frog. Zoologica 50: 47–53

    CAS  Google Scholar 

  • Vogel GM (1980) Oxygen uptake and transport in the sabellid polychaete Eudistylia vancouveri (Kinburg). MA Thesis, College of William and Mary, Williamsburg, Virginia

    Google Scholar 

  • von Brand T, Nolan MO, Mann ER (1948) Observations on the respiration of Australorbis glabratus and some other aquatic snails. Biol Bull 95: 199–223

    Google Scholar 

  • von Raben K (1934) Veränderungen im Kiemendeckel and in den Kiemen einiger Brachyuren (Decapoden) im Verlauf der Anpassung an die Feuchtluftatmung. Z Wiss Zool 145: 425–461

    Google Scholar 

  • Vosswinkel VR (1982) Das Blutgefässystem von Helix pomatia L. (Gastropoda, Pulmonata), 2. Licht-und elektronenmikroskopische Untersuchungen der verschiedenen Anteile des Systems. Zool Jahrb Anat 108: 341–374

    Google Scholar 

  • Vyas AB, Laliwala SM (1976) Anatomical studies on the book lungs of the scorpion Buthus tamulus with a note on the respiratory mechanism. J Anim Morphol Physiol 23: 3–7

    Google Scholar 

  • Wang N, Banzett RB, Butler JP, Fredberg JJ (1988) Bird lung models show that convective inertia effects inspiratory aerodynamic valving. Respir Physiol 73: 109–124

    Google Scholar 

  • Wang N, Banzett RB, Nations CS, Jenkins F (1992) An aerodynamic valve in the avian primary bronchus. J Exp Zool 262: 441–445

    PubMed  CAS  Google Scholar 

  • Warner GF (1977) The biology of crabs. Elek Science, London

    Google Scholar 

  • Wassnetzov W (1932) Über die Morphologie der Schwimmblase. Zool Jahrb Abt Anat Ont Tiere 56: 1–36

    Google Scholar 

  • Weber RE (1978) Respiration. In: Mill PJ (ed) Physiology of annelids. Academic Press, London pp 369–392

    Google Scholar 

  • Weibel ER (1963) Morphometry of the human lung. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Weibel ER (1971) Morphometric estimation of pulmonary diffusing capacity. I. Model and method. Respir Physiol 11: 54–75

    CAS  Google Scholar 

  • Weibel ER (1972) Morphometric estimation of pulmonary diffusing capacity, V. Comparative analysis of mammalian lungs. Respir Physiol 14: 26–43

    PubMed  CAS  Google Scholar 

  • Weibel ER (1973) Morphological basis of alveolar-capillary gas exchange. Physiol Rev 53: 419–495

    PubMed  CAS  Google Scholar 

  • Weibel ER (1983) Is the lung built reasonably? The 1983 J Burns Amberson Lecture. Am Rev Respir Dis 128: 752–760

    CAS  Google Scholar 

  • Weibel ER (1984a) The pathway for oxygen: structure and function of the mammalian respiratory system. Harvard University Press, Cambridge, Mass

    Google Scholar 

  • Weibel ER (1984b) Lung cell biology. In: Fishman AP, Fisher AB (eds) Handbook of physiology: respiration, vol 4. American Physiological Society, Washington, pp 47–91

    Google Scholar 

  • Weibel ER (1986) Functional morphology of lung parenchyma. In: Macklem P, Mead J (eds) Handbook of physiology: mechanics of breathing. American Physiological Society, Washington, pp 89–111

    Google Scholar 

  • Weibel ER (1989) Lung morphometry and models in respiratory physiology. In: Chang HK, Paiva M (eds) Respiratory Physiological and analytical approach. Dekker, New York, pp 1–56

    Google Scholar 

  • Weibel ER (1990) Morphometry: stereological theory and practical methods. In: Gil J (ed) Models of lung disease: microscopy and structural methods. Dekker, New York, pp 199–252

    Google Scholar 

  • Weibel ER (1991) Fractal geometry: a design principle for living organisms. Am J Physiol 261: L361 - L369

    PubMed  CAS  Google Scholar 

  • Weibel ER, Taylor CR, O’Neil JJ, Leith DE, Gehr P, Hoppeler H, Langman V, Baudinette RV (1983) Maximal oxygen consumption and pulmonary diffusing capacity: a direct comparison of physiologic and morphometric measurements in canids. Respir Physiol 54: 173–188

    PubMed  CAS  Google Scholar 

  • Weibel ER, Marques LB, Constantinopol M, Doffey F, Gehr P, Taylor CR (1987) Adaptive variation in the mammalian respiratory system in relation to energetic demand. V: the pulmonary gas exchanger. Respir Physiol 69: 81–100

    Google Scholar 

  • Weibel ER, Taylor CR, Hoppeller H (1991) The concept of symmorphosis: A testable hypothesis of structure-function relationship. Proc Natl Acad Sci USA 88: 10357–10361

    PubMed  CAS  Google Scholar 

  • Weis-Fogh T (1961) Power in flapping flight In: Ramasy L, Wigglesworth VB (eds) The cells and the organisms. Cambridge University Press, Cambridge, pp 89–112

    Google Scholar 

  • Weis-Fogh T (1964a) Diffusion in insect wing muscle, the most active tissue known. J Exp Biol 41: 229–256

    PubMed  CAS  Google Scholar 

  • Weis-Fogh T (1964b) Transition regime diffusion and the structure of the insect tracheolar system. J Insect Physiol 20: 947–956

    Google Scholar 

  • Weis-Fogh T (1964c) Functional design of the tracheolar system of flying insects as compared with the avian lung. J Exp Biol 41: 207–227

    CAS  Google Scholar 

  • Weis-Fogh T (1967) Respiration and tracheal ventilation in locusts and other flying insects. T Exp Biol 47: 561–587

    CAS  Google Scholar 

  • Weis-Fogh T (1973) Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J Exp Biol 59: 169–230

    Google Scholar 

  • Welsch U (1981) Fine structure and enzyme histochemical observations on the respiratory epithelium of the caecilian lungs and gills. A contribution to the understanding of the evolution of the vertebrate respiratory epithelium. Arch Histol Jpn 44: 117–133

    PubMed  CAS  Google Scholar 

  • Welsch U (1983) Phagocytosis in the amphibian lung. Anat Anz 154: 323–327

    Google Scholar 

  • Welsch U, Aschauer B (1986) Ultrastructural observations on the lung of the emperor penguin (Apternodytes forsteri). Cell Tissue Res 243: 137–144

    Google Scholar 

  • Welsch U, Storch V (1973) Die Feinstruktur verhornter und nichtverhornter ektodermaler Epithelien und der Hautdrüsen embryonaler und adulter Gymnophionen. Zool Jahrb Anat 90: 323–342

    Google Scholar 

  • West JB (1974) Respiratory physiology: the essentials. Williams and Wilkins, Baltimore

    Google Scholar 

  • West NH, Jones DR (1975) Breathing movements in the frog Rana pipiens. II. The power output and efficiency of breathing. Can J Zool 53: 345–353

    PubMed  CAS  Google Scholar 

  • West NH, Bamford OS, Jones DR (1977) A scanning electron microscope study of the microvasculature of the avian lung. Cell Tissue Res 176: 533–564

    Google Scholar 

  • White FN (1978) Circulation: a comparison of reptiles, mammals, and birds. In: Piiper J (ed) Respiratory function in birds, adult and embryonic. Springer, Berlin Heidelberg New York, pp 51–60

    Google Scholar 

  • Whitford WG (1973) The effects of temperature on respiration in the Amphibia. Am Zool 13: 305–312

    Google Scholar 

  • Whitford WG, Hutchison VH (1965) Gas exchange in salamanders. Physiol Zool 38: 228–242

    Google Scholar 

  • Whiting HP, Bone Q (1980) Ciliary cells in the epidermis of the larval Australian dipnoan, Neoceratodus. J Linn Soc Lond 68: 125–137

    Google Scholar 

  • Whitten JM (1972) Comparative anatomy of the tracheal system. Annu Rev Entomol 17: 373–402

    Google Scholar 

  • Wigglesworth VB (1935) The regulation of respiration in the flea, Xenopsylla cheopsis, Roths (Pulicidae). Proc R Soc Lond B 118: 397–419

    CAS  Google Scholar 

  • Wigglesworth VB, Lee WM (1982) The supply of oxygen to the flight muscles of insects: a theory of tracheole physiology. Tissue Cell 14: 501–518

    PubMed  CAS  Google Scholar 

  • Williams DD, Rausch RL (1973) Seasonal carbon dioxide and oxygen concentrations in the dens of hibernating mammals ( Sciuridae ). Comp Biochem Physiol 44A: 1227–1235

    Google Scholar 

  • Willmer EN (1934) Some observations on the respiration of certain tropical freshwater fish. J Exp Biol 11: 283–306

    CAS  Google Scholar 

  • Willmer EN (1970) Cytology and evolution, 2nd edn. Academic Press, London

    Google Scholar 

  • Wit F (1932) Über den Einfluss der Luftfeuchtigkeit auf die Grösse der Atemöffnung bei Landpulmonaten. Z Vgl Physiol 18: 116–124

    Google Scholar 

  • Wolcott TG (1988) Ecology. In: Burggren WW, McMahon BR (eds) Biology of the land crabs. Cambridge University Press, Cambridge, pp 55–56

    Google Scholar 

  • Wolcott TG, Wolcott DL (1984) Extrarenal urine modification for salt conservation in the land crab Cardisoma guanhami. Am Zool 57: 318–324

    Google Scholar 

  • Wolcott TG, Wolcott DL (1985) Extrarenal modifications of urine for ion conservation in ghost crabs, Ocypode quadrata Fabricius. J Exp Mar Biol Ecol 91: 93–107

    CAS  Google Scholar 

  • Wood CM, Randall DJ (1981) Oxygen and carbon dioxide exchange during exercise in the land crab (Cardisoma carnifex). J Exp Zool 218: 7–22

    Google Scholar 

  • Wood SC, Lenfant C (1976) Respiration, Mechanics, control and gas exchange. In: Gans C, Dawson WR (eds) Biology of Reptilia, vol 5. Academic Press, London, pp 225–274

    Google Scholar 

  • Wood SC, Weber RE, Maloiy GMO, Johansen K (1975) Oxygen uptake and blood respiratory properties of the caecilian Boulengelura taitanus. Respir Physiol 24: 355–363

    PubMed  CAS  Google Scholar 

  • Yonge CM (1947) The pallial organs in the Apidobrach Gastropoda and their evolution throughout the Mollusca. Philos Trans R Soc Lond B 232: 443–518

    CAS  Google Scholar 

  • Yonge CM (1952) The mantle cavity in Siphonaria alternata Say. Proc Malacol Soc Lond 29: 190–199

    Google Scholar 

  • Yonge CM (1958) Observations on the pulmonate limpet Trimusculus (Gadinia) reticularus (Sowerby). Proc Malacol Soc Lond 33: 31–37

    Google Scholar 

  • Youlson JH, Freeman PA (1976) Morphology of the gills of larval and parasitic adult sea lamprey, Petromyzon marinus L. J Morphol 149: 73–104

    Google Scholar 

  • Ysseling MA (1930) Ober die Atmung der Weinbergschnecke (Helix pomatia). Z Vgl Physiol 13: 1–60

    Google Scholar 

  • Zaaijer JJP, Volvekamp HP (1958) Some experiments on the haemoglobin-oxygen equilibrium in the bold of the ramshorn (Planorbis corneus). Acta Physiol Pharmacol Neerl 7: 56–77

    PubMed  CAS  Google Scholar 

  • Zaccone G, Tagliafierro G, Goniakowska-Witalinska L, Fasulo S, Ainis L, Mauceri A (1989) Serotonin-like immunoreactive cells in the pulmonary epithelium of ancient fish species. Histochemistry 92: 6–36

    Google Scholar 

  • Zar JH (1969) The use of allometric model for avian standard metabolism-body weight relationships. Comp Biochem Physiol 29: 227–234

    Google Scholar 

  • Zeuthen E (1942) The ventilation of the respiratory tract in birds, Biol Medd Dan Vidensk Selsk 17: 1–15

    Google Scholar 

  • Zeuthen E (1953) Oxygen uptake as related to body size in organisms. Q Rev Biol 28: 1–12

    PubMed  CAS  Google Scholar 

  • Zhao-Xian WS, Ning-Zhen S, Wen-Fang S (1989) Aquatic respiration in soft-shelled turtles, Trionyx sinensis. Comp Biochem Physiol 92A: 593–598

    Google Scholar 

  • Zhao-Xian W, Zhen-Ning S, Wei-Pung M, Jie-Ping C, Gong-Qing H (1991) The breathing pattern and heart rates of Alligator sinensis. Comp Biochem Physiol 98A: 77–87

    Google Scholar 

  • Zheng WB, Liu WS (1988) Morphology and histology of the swimbladder and ultrastructure of respiratory epithelium in the air-breathing catfish, Pangasius sutchi ( Pangasiidae ). J Fish Biol 33: 147–154

    Google Scholar 

  • Zoond A (1931) Studies on the localization of respiratory exchange in invertebrates. III. the book lungs of the scorpion. J Exp Biol 8: 263–266

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maina, J.N. (1994). Comparative Pulmonary Morphology and Morphometry: The Functional Design of Respiratory Systems. In: Advances in Comparative and Environmental Physiology. Advances in Comparative and Environmental Physiology, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78598-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78598-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78600-6

  • Online ISBN: 978-3-642-78598-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics