Skip to main content

Part of the book series: Research Notes in Neural Computing ((NEURALCOMPUTING,volume 4))

Abstract

This chapter provides an overview of some adaptive control methods and how artificial neural networks are being used as components of adaptive control systems. It suggests, however, that the adaptive control methods developed by control engineers can be misleading guides to thinking about control in biological systems. Furthermore, it suggests that neural networks, whether artificial or real, might be most effective when used as components of architectures that are not conservative extensions of conventional adaptive control architectures. After a brief discussion of control, several approaches to adaptive control as developed by control engineers are described, followed by presentation of a view of artificial neural networks and their potential roles in control systems. Two examples are described in which artificial neural networks have been applied successfully to difficult control problems, and a model of the cerebellum is discussed in light of conceptual schemes based on engineering control practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agre, P. E. (1988). The dynamic structure of everyday life. Technical Report TR 1085, Massachusetts Institute of Technology Artificial Intelligence Laboratory.

    Google Scholar 

  • Albus, J. S. (1971). A theory of cerebellar function. Mathematical Biosciences, 10, 25–61.

    Article  Google Scholar 

  • Arbib, M. A. (1987). Brains, Machines, and Mathematics, Second Edition. New York: Springer-Verlag.

    Google Scholar 

  • Ashby, W. R. (1960). Design for a Brain. London: Associated Book Publishers.

    MATH  Google Scholar 

  • Atkeson, C. G. & Reinkensmeyer, D. J. (1988). Using associative content-addressable memories to control robots. In Proceedings of the IEEE Conference on Decision and Control, pages 792–797.

    Google Scholar 

  • Barto, A. (1991). Some learning tasks from a control perspective. In Nadel, L. & Stein, D. L. (Eds.), 1990 Lectures in Complex Systems, pages 195–223. Redwood City, CA: Addison-Wesley Publishing Company, The Advanced Book Program.

    Google Scholar 

  • Barto, A. G. (1985). Learning by statistical cooperation of self-interested neuron-like computing elements. Human Neurobiology, 229–256.

    Google Scholar 

  • Barto, A. G. (1989). From chemotaxis to cooperativity: Abstract exercises in neuronal learning strategies. In Durbin, R., Maill, R., & Mitchison, G. (Eds.), The Computing Neuron, pages 73–98. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Barto, A. G. (1990). Connectionist learning for control: An overview. In Miller, T., Sutton, R. S., & Werbos, P. J. (Eds.), Neural Networks for Control, pages 5–58. Cambridge, MA: MIT Press.

    Google Scholar 

  • Bellman, R. E. (1957). Dynamic Programming. Princeton, NJ: Princeton University Press.

    MATH  Google Scholar 

  • Berthier, N., Singh, S., Barto, A., & Houk, J. (1991). Distributed representation of limb motor programs in arrays of adjustable pattern generators. NPB Technical Report 3, Institute for Neuroscience, Northwestern University, Chicago, IL.

    Google Scholar 

  • Brooks, R. A. (1986). A robust layered central system for a mobile robot. IEEE J. of Robotics and Automation, RA-2, 14–23.

    Google Scholar 

  • Dean, T. L. & Wellman, M. P. (1991). Planning and Control. San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  • Dickmanns, E. D., Mysliwetz, B., & Christians, T. (1990). An integrated spatio-temporal approach to automatic visual guidance of autonomous vehicles. IEEE Transactions on Systems, Man, and Cybernetics, 20, 1273–1284.

    Article  Google Scholar 

  • Goodwin, G. C. & Sin, K. S. (1984). Adaptive Filtering Prediction and Control. Englewood Cliffs, N.J.: Prentice-Hall.

    MATH  Google Scholar 

  • Gullapalli, V. (1990). A stochastic reinforcement algorithm for learning real-valued functions. Neural Networks, 671–692.

    Google Scholar 

  • Gullapalli, V. (1992). Reinforcement learning and its application to control. Technical Report COINS Technical Report 92–10, University of Massachusetts, Amherst, MA.

    Google Scholar 

  • Gullapalli, V., Grupen, R. A., & Barto, A. G. (1992). Learning reactive admittance control. In 1992 IEEE Conference on Robotics and Automation. To appear.

    Google Scholar 

  • Hollerbach, J. M. (1982). Computers, brains and the control of movement. Trends in Neuroscience, 5, 189–192.

    Article  Google Scholar 

  • Houk, J. C. & Barto, A. G. (To appear). Distributed sensorimotor learning. In Stelmach, G. E. & Requin, J. (Eds.), Tutorials in Motor Behavior II. Amsterdam, The Netherlands: Elsevier Science Publishers B. V.

    Google Scholar 

  • Houk, J. C., Singh, S. P., Fisher, C., k Barto, A. G. (1990). An adaptive network inspired by the anatomy and physiology of the cerebellum. In Miller, T., Sutton, R. S., & Werbos, P. J. (Eds.), Neural Networks for Control, pages 301–348. Cambridge, MA: MIT Press.

    Google Scholar 

  • Jacobs, R. A., Jordan, M. I., & Barto, A. G. (1991). Task decomposition through competition in a modular connectionist architecture: The what and where vision task. Cognitive Science, 15, 219–250.

    Article  Google Scholar 

  • Jordan, M. I. & Rumelhart, D. E. (In press). Forward models: Supervised learning with a distal teacher. Cognitive Science.

    Google Scholar 

  • Kawato, M. (1990). Computational schemes and neural network models for formation and control of multijoint arm trajectory. In Miller, T., Sutton, R. S., & Werbos, P. J. (Eds.), Neural Networks for Control. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kawato, M., Furukawa, K., & Suzuki, R. (1987). A hierarchical neural-network model for control and learning of voluntary movement. Biological Cybernetics, 57, 169–185.

    Article  MATH  Google Scholar 

  • Kohonen, T. (1977). Associative Memory: A System Theoretic Approach. Berlin: Springer- Varlag.

    Google Scholar 

  • le Cun, Y. (1985). Une procedure d’apprentissage pour reseau a sequil assymetrique [A learning procedure for asymmetric threshold network]. Proceedings of Cognitiva, 85, 599–604.

    Google Scholar 

  • Marr, D. (1969). A theory of cerebellar cortex. Journal of Physiology (Lond), 202, 437–470.

    Google Scholar 

  • Miller, T., Sutton, R. S., & Werbos, P. J. (1990). Neural Networks for Control. Cambridge, MA: MIT Press.

    Google Scholar 

  • Narendra, K. & Thathachar, M. A. L. (1989). Learning Automata: An Introduction. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Parker, D. B. (1985). Learning logic. Technical Report TR-47, Massachusetts Institute of Technology.

    Google Scholar 

  • Pomerleau, D. A., Gowdy, J., & Thorpe, C. E. (1991). Combining artificial neural network and symbolic processing for autonomous robot guidance. Engineering Applications of Artificial Intelligence, 279–285.

    Google Scholar 

  • Rohrs, C. E. (1990). Rethinking adaptive control for the 90’s. In Proceedings of the 29th Conference on Decision and Control, pages 3143–3145, Honolulu, Hawaii.

    Google Scholar 

  • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error propagation. In Rumelhart, D. E. & McClelland, J. L. (Eds.), Parallel Distributed Processing: Explorations in the Micro structure of Cognition, vol.1: Foundations. Cambridge, MA: Bradford Books/MIT Press.

    Google Scholar 

  • Stanfill, C. & Waltz, D. (1986). Toward memory-based reasoning. Communications of the ACM, 29, 1213–1228.

    Article  Google Scholar 

  • Sutton, R. S., Barto, A. G., & Williams, R. J. (1991). Reinforcement learning is direct adaptive optimal control. In Proceedings of the American Control Conference, pages 2143–2146, Boston, MA.

    Google Scholar 

  • Tomovic, R. & McGhee, R. B. (1966). A finite state approach to the synthesis of bioengineering control systems. IEEE Trans. HFE, 7, 65–69.

    Google Scholar 

  • Werbos, P. J. (1974). Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis, Harvard University.

    Google Scholar 

  • Wiener, N. (1948). Cybernetics. Cambridge, MA: MIT Press.

    Google Scholar 

  • Ydstie, B. E. (1986). Bifurcation and complex dynamics in adaptive control systems. In Proceedings of the 25th Conference on Decision and Control, pages 2232–2236, Athens.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barto, A.G., Gullapalli, V. (1993). Neural Networks and Adaptive Control. In: Rudomin, P., Arbib, M.A., Cervantes-Pérez, F., Romo, R. (eds) Neuroscience: From Neural Networks to Artificial Intelligence. Research Notes in Neural Computing, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78102-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78102-5_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56501-7

  • Online ISBN: 978-3-642-78102-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics