Skip to main content

Autorhythmicity in Blood Vessels: Its Biophysical and Biochemical Bases

  • Conference paper
Rhythms in Physiological Systems

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 55))

Abstract

The rhythmogenic properties of vascular smooth muscle are closely linked to the intact circulation. The electrical and mechanical oscillations, which can be traced back to rhythmic activity of the active, electrogenic Na+/K+ pump, could originate in the allosteric qualities of the enzyme phosphofructokinase. Thus, phosphofructokinase represents a rhythmogenic enzyme which may well serve as an example of the connection between biological properties on a molecular level and the system’s behaviour in space and time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aschoff, J.: Circadian clocks. Amsterdam: North-Holland Publ. Comp. 1965.

    Google Scholar 

  2. Boiteux, A., Goldbeter, A., Hess, B.: Control of oscillating glycolysis of yeast by stochastic, periodic, and steady source of substrate: a model and experimental study. Proc. Natl. Acad. Sci. U.S.A. 72, 3829–3833 (1975).

    Article  ADS  Google Scholar 

  3. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  Google Scholar 

  4. Bülbring, Edith, Lüllmann, H.: The effect of metabolic inhibitors on the electrical and mechanical activity of the smooth muscle of the guinea-pig’s taenia coli. J. Physiol. (Lond.) 136, 310–323 (1957).

    Google Scholar 

  5. Cannell, M.B., Lederer, W.J.: The arrhythmogenic current ITI in the absence of electrogenic sodium-calcium exchange in sheep cardiac Purkinje fibres. J. Physiol. (Lond.) 374, 201–219 (1986).

    Google Scholar 

  6. Casteels, R., Kitamura, K., Kuriyama, H., Suzuki, H.: The membrane properties of the smooth muscle cells of the rabbit main pulmonary artery. J. Physiol. (Lond.) 271, 41–61 (1977).

    Google Scholar 

  7. Chance, B., Pye, E.K., Ghosh, A.K., Hess, B.: Biological and biochemical oscillators. New York, London: Academic Press 1973.

    Google Scholar 

  8. Chance, E.M., Curtis, A.R., Jones, I.P., Kirby, C.R.: FACSIMILE: a computer program for flow and chemistry simulation, and general initial value problems. Harwell: UK Atomic Energy Authority 1977.

    Google Scholar 

  9. Evans, P.R., Hudson, P.J.: Three dimensional structure of phosphofructokinase from Bacillus stearothermophilus. In: Protein: structure, function and industrial applications, edited by Hofmann, E., Pfeil, W., Aurich, H., pp. 349–357. Oxford: Pergamori Press 1979.

    Google Scholar 

  10. Goldbeter, A.: Patterns of spatiotemporal organization in an allosterie enzyme model. Proc. Natl. Acad. Sci. U.S.A. 70, 3255–3259 (1973).

    Article  ADS  Google Scholar 

  11. Haken, H.: Entwicklungslinien der Synergetik, I. Naturwissenschaften 75, 163–172 (1988).

    Article  ADS  Google Scholar 

  12. Haken, H.: Entwicklungslinien der Synergetik, II. Naturwissenschaften 75, 225–234 (1988).

    Article  ADS  Google Scholar 

  13. Hermsmeyer, K.: High shortening velocity of isolated single arterial muscle cells. Experientia 35, 1599–1602 (1979).

    Article  Google Scholar 

  14. Hermsmeyer, K., Harder, D.: Membrane ATPase mechanism of K+-return relaxation in arterial muscles of stroke-prone SHR and WKY. Am. J. Physiol. 250, C557-C562 (1986).

    Google Scholar 

  15. Hess, B.: Modelle enzymatischer Prozesse. In: Biologische Modelle, Band 33, edited by Scharf, J.-H., Bruns, G., pp. 195–230. Leipzig: Johann Ambrosius Barth 1968.

    Google Scholar 

  16. Hofer, H.W., Pette, D.: Verfahren einer standardisierten Extraktion und Reinigung der Phosphofructokinase aus Kaninchen-Skelettmuskel. Hoppe-Seyler’s Z. physiol. Chem. 349, 995–1012 (1968).

    Article  Google Scholar 

  17. Koepchen, H.P.: Die Blutdruckrhythmik. Darmstadt: Dr. Dietrich Steinkopff Verlag 1962.

    Google Scholar 

  18. Koepchen, H.P., Seller, H., Polster, J.: Hochempfindliche Widerstandsregistrierung bei kleinen Flüssen. Pflugers Arch. ges. Physiol. 294, 72–78 (1967).

    Google Scholar 

  19. Koepchen, H.P., Seller, H., Polster, J., Langhorst, P.: Über die Fein-Vasomotorik der Muskelstrombahn und ihre Beziehung zur Ateminnervation. Pflügers Arch. ges. Physiol. 302, 285–299 (1968).

    Google Scholar 

  20. Kubista, V., Kubistova, J., Pette, D.: Thyroid hormone induced changes in the enzyme activity pattern of energy-supplying metabolism of fast (white), slow (red), and heart muscle of the rat. Eur. J. Biochem. 18, 553–560 (1971).

    Article  Google Scholar 

  21. Kuriyama, H.: Ionic basis of smooth muscle action potentials. In: Handbook of Physiology, Section 6: Alimentary Canal, vol. IV, Motility, edited by Code, Ch.F., pp. 1767–1791. Washington, D.C.: American Physiological Society 1968.

    Google Scholar 

  22. Kuriyama, H., Suyama, A.: Multiple actions of cocaine on neuromuscular transmission and smooth muscle cells of the guinea-pig mesenteric artery. J. Physiol. (Lond.) 337, 631–654 (1983).

    Google Scholar 

  23. Marquardt, D.L.: An algorithm for least squares estimates of non-linear parameters. J. Siam 11, 431–441 (1963).

    MathSciNet  MATH  Google Scholar 

  24. Monod, J., Wyman, J., Changeux, J.-P.: On the nature of allosteric transitions: a plausible model. J. mol. Biol. 12, 88–118 (1965).

    Article  Google Scholar 

  25. Plesser, Th.: Dynamic states of allosteric enzymes. In: VII. Internationale Konferenz über nichtlineare Schwingungen, vol. II/2, pp. 273–280. Berlin: Akademie-Verlag 1977.

    Google Scholar 

  26. Plesser, Th., Lamprecht, I.: Chemical turnover and the rate of heat production in complex reaction systems. Springer Series in Synergetics 39, 182–192 (1988).

    Google Scholar 

  27. Polster, J., Seller, H., Langhorst, P., Koepchen, H.P.: Zeitliche Eigenschaften der Vasomotorik. Über den Verlauf von Widerstandsänderungen an Hautgefaßen bei indirekter Reizung. Pflügers Arch. ges. Physiol. 296, 95–109 (1967).

    Google Scholar 

  28. Seller, H., Langhorst, P., Polster, J., Koepchen, H.-P.: Zeitliche Eigenschaften der Vasomotorik. Erscheinungsformen und Entstehung spontaner und nervös induzierter Gefaßrhythmen. Pflügers Arch. ges. Physiol. 296, 110–132 (1967).

    Google Scholar 

  29. Siegel, G.: Principles of vascular rhythmogenesis. Prog. appl. Microcirc. 3, 40–62 (1983).

    Google Scholar 

  30. Siegel, G.: Membranphysiologische Grundlagen der Gefäßeigenrhythmik. In: Vasomotion und quantitativeKapillaroskopie, hrsg. von Meßmer, K., Hammersen, F., pp. 42–70. Basel, München, Paris, London, New York, Tokyo, Sydney: S. Karger 1983.

    Google Scholar 

  31. Siegel, G.: Membranphysiologische Grundlagen der peripheren Gefäßregulation. Physiol, akt. 1, 31–52 (1986).

    Google Scholar 

  32. Siegel, G., Adler, A., Ebeling, B.J., Roedel, H., Hofer, H.W., Nolte, J.: Temporal behaviour of transmembrane ion exchange in vascular smooth muscle. Angéiologie 36, 261–285 (1984).

    Google Scholar 

  33. Siegel, G., Carl, A., Adler, A., Stock, G.: Effect of the prostacyclin analogue iloprost on K+ permeability in the smooth muscle cells of the canine carotid artery. Eicosanoids 2, 213–222 (1989).

    Google Scholar 

  34. Siegel, G., Ebeling, B.J., Hofer, H.W.: Foundations of vascular rhythm. Ber. Bunsenges. Phys. Chem. 84, 403–406 (1980).

    Google Scholar 

  35. Siegel, G., Ebeling, B.J., Hofer, H.W., Nolte, J., Roedel, H., Klüßendorf, D.: Vascular smooth muscle rhythmicity. In: Mechanisms of blood pressure waves, edited by Miyakawa, K., Koepchen, H.P., Polosa, C., pp. 319–340. Tokyo, Berlin, Heidelberg, New York: Japan Sci. Soc. Press and Springer-Verlag 1984.

    Google Scholar 

  36. Siegel, G., Ehehalt, R., Koepchen, H.P.: Membrane potential and relaxation in vascular smooth muscle. In: Mechanisms of vasodilatation, edited by Vanhoutte, P.M., Leusen, I., pp. 56–72. Basel, München, Paris, London, New York, Sydney: S. Karger 1978.

    Google Scholar 

  37. Siegel, G., Hofer, H.W., Schnalke, F., Adler, A., Walter, A., Koepchen, H.P.: Membrane physiological basis of vascular autorhythmicity. Prog. appl. Microcirc. 15, 10–31 (1989).

    Google Scholar 

  38. Siegel, G., Jäger, R., Nolte, J., Bertsche, O., Roedel, H., Schröter, R.: Ionic concentrations and membrane potential in cerebral and extracerebral arteries. In: Pathology of cerebral microcirculation, edited by Cervós-Navarro, J., pp. 96–120. Berlin, New York: Walter de Gruyter 1974.

    Google Scholar 

  39. Siegel, G., Koepchen, H.P., Roedel, H.: Slow oscillations of transmembrane Na and K fluxes in vascular smooth muscle. In: Vascular smooth muscle, edited by Betz, E., pp. 3–6. Berlin, Heidelberg, New York: Springer-Verlag 1972.

    Google Scholar 

  40. Siegel, G., Roedel, H., Hofer, H.W.: Basic rhythms in vascular smooth muscle. INSERM Coll. 50, 215–232 (1976).

    Google Scholar 

  41. Siegel, G., Roedel, H., Nolte, J., Hofer, H.W., Bertsche, O.: Ionic composition and ion exchange in vascular smooth muscle. In: Physiology of smooth muscle, edited by Bülbring, E., Shuba, M.F., pp. 19–39. New York: Raven Press 1976.

    Google Scholar 

  42. Siegel, G., Schnalke, F., Stock, G.: Vasorelaxation in prostacyclin-hyperpolarized arterial smooth musculature. Prog. Clin. Biol. Res. 301, 441–447 (1989).

    Google Scholar 

  43. Siegel, G., Thiel, M., Walter, A., Adler, A.: Membranphysiologische Grundlagen der Vasomotorik. In: Berichtsband der 5. Gemeinsamen Jahrestagung der Angiologischen Gesellschaften der Bundesrepublik Deutschland, Österreichs und der Schweiz, hrsg. von Häring, R., pp. 147–153. Gräfelfing: Demeter Verlag 1986.

    Google Scholar 

  44. Siegel, G., Walter, A., Bostanjoglo, M., Jans, A.W.H., Kinne, R., Piculell, L., Lindman, B.: Ion transport and cation-polyanion interactions in vascular biomembranes. J. Membrane Sci. 41, 353–375 (1989).

    Article  Google Scholar 

  45. Van Schaftingen, E., Hers, H.-G.: Formation of fructose 2,6-bisphosphate from fructose 1,6- bisphosphateby intramolecular cyclisation followed by alkaline hydrolysis, Eur. J. Biochem. 117, 319–323 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Siegel, G., Walter, A., Schnalke, F., Hofer, H.W., Koepchen, H.P., Riickborn, K. (1991). Autorhythmicity in Blood Vessels: Its Biophysical and Biochemical Bases. In: Haken, H., Koepchen, H.P. (eds) Rhythms in Physiological Systems. Springer Series in Synergetics, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76877-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76877-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76879-8

  • Online ISBN: 978-3-642-76877-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics