Skip to main content

Crustal Evolution, Global Tectonics and Mineral Deposits

  • Chapter
Hydrothermal Mineral Deposits
  • 1424 Accesses

Abstract

The theory of sea-floor spreading and the “new” global tectonics, including the more recent ideas on accretionary tectonics, has permitted a much clearer understanding of the genesis of mineral deposits. This understanding is essentially provided by a unifying framework within which processes of ore genesis can be integrated. In this way mineralisation types can be related to time-space positions, in specific lithospheric plate settings, and within continuously evolving crustal geodynamic patterns. The spatial distribution of mineral deposits as related to plate tectonic processes has been widely discussed in many papers, especially during the 1970–1980 decade. Consequently, excellent textbooks on the topic were published soon after, which in spite of subsequent advances in more recent years, remain important texts for providing the geologist with an essential background in the study of mineral deposits. The books referred to are those published by Mitchell and Garson (1981), Hutchison (1983) and Sawkins (1990). Equally important in models of ore genesis is an understanding of the evolutionary trends of mineral deposits through the geological ages. This field of study is obviously connected with the evolution of plate configurations and their interactions through time. The works of Watson (1973,1978), Reed and Watson (1975), Cloud (1976), Goodwin (1981), Lambert and Groves (1981), Meyer (1981, 1988), Hutchinson (1980), and Windley (1984) all deal with these evolutionary trends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams C J, Black L P, Corbett K D, Green G R (1985) Reconnaissance isotopic studies bearing on the tectonothermal history of early Paleozoic and late Proterozoic sequences in western Tasmania. Aust J Earth Sci 32: 7–36

    Google Scholar 

  • Alt D, Sears J W, Hyndman D W (1988) Terrestrial maria: the origins of large basalt plateaus, hotspot tracks, and spreading ridges. J Geol 96: 647–662

    Google Scholar 

  • Anhaeusser C R (1971) The Barberton Mountain Land, South Africa - a guide to the understanding of the Archean geology of Western Australia. Geol Soc Aust Spec Publ 3: 103–119

    Google Scholar 

  • Anhaeusser C R (1975) Precambrian tectonic environments. Earth Planet Sci Lett 3: 31–53

    Google Scholar 

  • Anhaeusser C R (1976) Archean metallogeny in Southern Africa. Econ Geol 71: 16–43

    Google Scholar 

  • Anhaeusser C R, Maske S (eds) (1986) Mineral Deposits of Southern Africa, vol 1, 2. Geol Soc S Afr, 2376 pp

    Google Scholar 

  • Appel Uitterdijk P W, LaBerge L G (eds) (1987) Precambrian iron formations. Theophrastus, Zographou, Athens, 674 pp

    Google Scholar 

  • Baker E M, Tullemans F J 1990 Kidston gold deposits. In: Hughes F E (ed) Geology of the mineral deposits of Australia and Papua New Guinea, vol 2. Australas Inst Min Metall Monogr 14, Parkville, Victoria, pp 1461–1465

    Google Scholar 

  • Baragar W R A, Scoates R F J (1981) The circum-Superior belt: A Proterozoic plate margin? In: Kroner A (Ed) Precambrian plate tectonics. Elsevier, Amsterdam, pp 261–296

    Google Scholar 

  • Barley M E, Eisenlohr B N, Groves D I, Perring C S, Vearncombe J R (1989) Late Archean convergent margin tectonics and gold mineralization: a new look at the Norseman-Wiluna belt, Western Australia. Geology 17: 826–829

    Google Scholar 

  • Bickle M, Nisbett E G (1986) Greenstone belt tectonics-thermal constraints. Workshop on the tectonic evolution of greenstone belts. Lunar Planet Inst NASA, pp 1–8

    Google Scholar 

  • Bird J M, Isacks, B (eds) (1972) Plate tectonics. Selected papers from the Journal of Geophysical Research. Am Geophys Un, Washington D C

    Google Scholar 

  • Bond G C, Nickeson P A, Kominz M A (1984) Breakup of a supercontinent between 625 Ma and 555 Ma: new evidence and implications for continental histories. Earth Planet Sci Lett 70: 325–345

    Google Scholar 

  • Borg G (1988) The Koras-Sinclair-Ghanzi rift in Southern Africa Volcanism, sedimentation, age relationships and geophysical signature of Late Middle Proterozoic rift system. Precambrian Res 38: 75–90

    Google Scholar 

  • Brown G C (1982) Calc-alkaline intrusive rocks: their diversity, evolution, and relation to volcanic arcs. In: Thorpe R S (ed) Andesites. John Wiley & Sons, New York, pp 437–461

    Google Scholar 

  • Brown G C, Thorpe R S, Webb P C (1984) The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources. J Geol Soc London 141: 413–426

    Google Scholar 

  • Burke K (1977) Aulocogens and continental breakup. Annu Rev Earth Planet Sci 5: 371–396

    Google Scholar 

  • Burke K C A, Dewey J F (1973) Plume generated triple junctions: key indicators in applying plate tectonics to old rocks. J Geol 86: 406–433

    Google Scholar 

  • Burke K, Dewey J F, Kidd W S F (1976) Dominance of horizontal movements, arc and microcontinental collisions during the later permobile regime. In: Windley B F (ed) The early history of the Earth. John Wiley & Sons, New York, pp 13–129

    Google Scholar 

  • Burke K, Kidd W S F, Kusky T (1985) Is the Ventersdorp rift system of Southern Africa related to continental collision between the Kaapvaal and Zimbabwe cratons at 264 Ga ago? Tectono- physics 115: 1–24

    Google Scholar 

  • Button A, Pretorius D A, Jansen H, Stocklmayer V, Hunter D R, Wilson J F, Wilson A H, Vermak C F, Lee C A, Stagman J G (1981) The cratonic environment. In: Hunter D R (ed) Precambrian of the southern hemisphere. Elsevier, Amsterdam, pp 501–627

    Google Scholar 

  • Clendenin C W, Charlesworth E G, Maske S (1988) An early Proterozoic three-stage rift system, Kaapvaal craton, South Africa. Tectonophysics 145: 73–86

    Google Scholar 

  • Cloud P (1976) Major features of crustal evolution. Geol Soc S Afr Vol LXXIX:l–33

    Google Scholar 

  • Coleman P J (ed) (1973) The Western Pacific island arcs-marginal seas-geochemistry. Univ W Aust Press, Perth, Adelaide, 675 pp

    Google Scholar 

  • Condie K C (1981) Archean Greenstone Belts. Developments in Precambrian Geology 3. Elsevier, Amsterdam

    Google Scholar 

  • Condie K C, Hunter D R (1976) Trace element geochemistry of Archean granitic rocks from the Barberton region, South Africa. Earth Planet Sci Lett 29: 389–400

    Google Scholar 

  • Coney P J, Jones D L, Monger J W H (1980) Cordilleran suspect terranes. Nature (London) 288: 329–333

    Google Scholar 

  • Cook F A, Albaugh D S, Brown L D, Kaufman S, Oliver J E, Hatcher R D (1979) Thin skinned tectonics in the crystalline southern Appalachians: COCORP seismic reflection profiling of the Blue Ridge and Piedmont. Geology 7: 563–567

    Google Scholar 

  • Coward M P, Jan M Q, Rex D, Tarney J, Thirwall M, Windley B F (1982) Geotectonic framework of the Himalaya of North Pakistan. J Geol Soc London 139: 299–308

    Google Scholar 

  • Cox K G (1978) Flood basalts, subduction and the breakup of Gondwanaland. Nature (London) 274: 47–49

    Google Scholar 

  • Crook K A W (1980) Fore-arc evolution in the Tasman geosyncline: the origin of the south-eastern Australian continental crust. J Geol Soc Aus 27: 215–232

    Google Scholar 

  • Dewey J F, Burke K C A (1974) Hot spots and continental breakup: implications for collisional orogeny. Geology 2: 57–60

    Google Scholar 

  • Dewey J F, Pitman W C, Ryan W B F, Bonnin J (1973) Plate tectonics and the evolution of the Alpine system. Geol Soc Am Bull 84: 3137–3180

    Google Scholar 

  • De Wit M J, Jeffery M, Bergh H, Nicolaysen L (1988) Geological map of sectors of Gondwana. Am Ass Pet Geol; Univ Witwatersrand

    Google Scholar 

  • Dickinson W R (1973) Reconstruction of past arc-trench systems from petrotectonic assemblages in the island arcs of the Western Pacific. In: Coleman P J (ed) The Western Pacific. Univ W Aust Press, Perth, Adelaide, pp 569–602

    Google Scholar 

  • Dimroth E (1981) Labrador geosyncline: Type example of early Proterozoic cratonic reactivation. In: Kroner A (ed) Precambrian Plate Tectonics. Elsevier, Amsterdam, pp 331–352

    Google Scholar 

  • Donaldson J A, McGlynn J C, Irving E, Park J K (1973) Drift of the Canadian shield. In: Tarling D H, Runcorn S K (eds) Implication of continental drift to the Earth Sciences. Academic Press, New York, London, pp 3–18

    Google Scholar 

  • Economic Geology (ed) ( 1985 A special issue devoted to the Bushveld Complex. Econ Geol 80, 4

    Google Scholar 

  • Einaudi M T, Hitzman M W (1986) Mineral deposits in Northern Alaska: Introduction. Econ Geol 81: 1583–1591

    Google Scholar 

  • Emberger A (1984) La carte metallogenique de l’Europe et des pays limitrophes 1/2 500000 Un bilan des années 1960-1983 Chron Rech Min 475: 51–56

    Google Scholar 

  • Ewart A, Bryan W B (1973) The petrology and geochemistry of the Tongan Islands. In: Coleman P J (ed) The Western Pacific island arcs - marginal seas - geochemistry. Univ W Aust Press, Perth, Adelaide, pp 503–522

    Google Scholar 

  • Frey H (1980) Crustal evolution of the early Earth: the role of major impacts. Precambrian Res 10: 195–216

    Google Scholar 

  • Frutos J (1982) Andean metallogeny related to the tectonic and petrologic evolution of the Cordillera. Some remarkable points. In: Amstutz G C, Goresy El A, Frenzel G, Kluth C, Moh G, Wauschkuhn A, Zimmermann R A (eds) Ore genesis - The State of the Art. Springer, Berlin, Heidelberg, New York, pp 493–507

    Google Scholar 

  • Fyfe W S (1978) The evolution of the Earth’s crust: modern plate tectonics to ancient hotspot tectonics? Chem Geol 23: 89–114

    Google Scholar 

  • Gass I G (1981) Pan-African (Upper Proterozoic) plate tectonics of the Arabian-Nubian shield. In: Kroner A (ed) Precambrian Plate Tectonics. Elsevier, Amsterdam, pp 388–405

    Google Scholar 

  • Glikson A Y (1972) Early Precambrian evidence of a primitive ocean crust and island nuclei of sodic granite. Bull Geol Soc Am 83: 3323–3344

    Google Scholar 

  • Glikson A Y (1976) Stratigraphy and evolution of a primary and secondary greenstone: significance of data from shields of the southern hemisphere. In: Windley B F (ed) The early history of the Earth. Wiley-Interscience, London, pp 257–277

    Google Scholar 

  • Glikson A Y (1981) Uniformitarian assumptions, plate tectonics and the Precambrian Earth. In: Kroner A (ed) Precambrian Plate Tectonics. Elsevier, Amsterdam, pp 91–104

    Google Scholar 

  • Glikson A Y, Lambert I B (1976) Vertical zonation and petrogenesis of the early Precambrian crust in Western Australia. Tectonophysics 30: 55–89

    Google Scholar 

  • Goodwin A M (1981) Precambrian perspectives. Science 213: 55–61

    Google Scholar 

  • Green D H (1972) Archean greenstone belts may include terrestrial equivalent of lunar maria? Earth Planet Sci Lett 15: 263–270

    Google Scholar 

  • Grieve RAF (1980) Impact bombardment and its role in proto-continental growth of the early Earth. Precambrian Res 10: 217–247

    Google Scholar 

  • Griffiths J R (1977) Geology and metallogeny of the Lachlan orogen, Australia: a time-space analysis and preliminary tectonic synthesis. CSIRO Invest Rep 123: 42 pp

    Google Scholar 

  • Gross G A (1980) A classification of iron formations based on depositional environments. Can Mineral 18: 215–222

    Google Scholar 

  • Groves D I, Batt W D (1984) Spatial and temporal variations of Archean metallogenic associations in terms of evolution of granitoid-greenstone terrains with particular emphasis on the Western Australian shield. In: Kroner A, Hanson G H, Goodwin A M (eds) Archean Geochemistry. Springer, Berlin, Hedelberg, New york, pp 73–98

    Google Scholar 

  • Hargraves R B (1981) Precambrian tectonic styles: A liberal uniformitarian interpretation. In: Kroner A (ed) Precambrian plate tectonics. Developments in Precambrian Geology, Vol 4. Elsevier, Amsterdam, pp 21–51

    Google Scholar 

  • Hartnady C, Joubert P, Stowe C (1985) Proterozoic crustal evolution in Southwestern Africa, Episodes 8: 236–244

    Google Scholar 

  • Hoffman P F (1980) Wopmay orogen: a Wilson cycle of early Proterozoic age in the northwest of the Canadian shield. In: Strangway D F (ed) The continental crust and its mineral deposits. Geol Ass Can Spec Pap 20: 523–549

    Google Scholar 

  • Howell D G (1985) Terranes. Sci Am 253: 90–103

    Google Scholar 

  • Howell D G (1989) Tectonics of suspect terranes - Mountain building and continental growth. Chapman and Hall, London, New York, 232 pp

    Google Scholar 

  • Hunter D R (1974) Crustal development in the Kaapvaal craton. Econ Geol Res Unit, Univ Witwatersrand Inf Circ 83 and 84

    Google Scholar 

  • Hurley P M, Rand J R (1969) Predrift continental nuclei. Science 164: 1229–1242

    Google Scholar 

  • Hutchinson R W (1973) Volcanogenic sulfide deposits and their metallogenic significance. Econ Geol 68: 1223–1246

    Google Scholar 

  • Hutchinson R W (1980) Massive base metal sulphide deposits as guides to tectonic evolution. In: Strangway D W (ed) The continental crust and its mineral deposits. Geol Ass Can Spec Pap 20: 659–684

    Google Scholar 

  • Hutchinson R W, Viljoen R P (1988) Re-evaluation of gold source in Witwatersrand ores. S Afr J Geol 91: 157–173

    Google Scholar 

  • Hutchison C S (1983) Economic deposits and their tectonic setting. MacMillan Press, New York, 355 pp

    Google Scholar 

  • Irving E (1977) Continental drift since the Devonian. Nature, (London) 270: 304–309

    Google Scholar 

  • James H L, Trendall A F (1982) Banded iron formation: distribution in time and paleoenvironmen- tal significance. In: Holland H D, Schidloswki M (eds) Mineral deposits and the evolution- of the biosphere. Dahlem Worksh Rep. Springer, Beriln, Heidelberg, New York, pp 199–218

    Google Scholar 

  • Jolivet L, Huchon P, Rangin C (1989) Tectonic setting of Western Pacific marginal basins. Tectonophysics 160: 23–47

    Google Scholar 

  • Karig D E, (1974) Evolution of arc systems in the western Pacific. Annu Rev Earth Planet Sci 2: 51–75

    Google Scholar 

  • Keays R R, Nickel E H, Groves D I, McGoldrich P J (1982) Iridium and palladium as discriminants of volcanic-exhalative hydrothermal, and magmatic nickel sulfide mineralisation. Econ Geol 77: 1535–1547

    Google Scholar 

  • Kimberley M M (1989a) Nomenclature for Iron Formations. Ore Geol Rev 5: 1–12

    Google Scholar 

  • Kimberley M M (1989b) Exhalative orings for Iron Formations. Ore Geol Rev 5: 13–145

    Google Scholar 

  • Kröner A (1981) Precambrian plate tectonics. In: Kroner A (ed) Precambrian plate tectonics. Elsevier, Amsterdam, pp 57–90

    Google Scholar 

  • Kröner A (1985) Evolution of the Archean continental crust. Annu Rev Earth Planet Sci 13: 49–74

    Google Scholar 

  • Lambert I B, Groves D I (1981) Early earth evolution and metallogeny. In: Wolf K H (ed) Handbook of stratabound and stratiform ore deposits, vol 8. Elsevier, Amsterdam, pp 339–447

    Google Scholar 

  • Leach D L, Landis G P, Hofstra A H (1988) Metamorphic origin of the Coeur d’Alene base-and precious-metal veins in the Belt basin, Idaho and Montana. Geology 16: 122–125

    Google Scholar 

  • Lefort J P, Audren C L, Max M D (1982) The southern part of the Armorican orogeny: a result of crustal shortening related to reactivation of a pre-Hercynian mafic belt during Carboniferous time. Tectonophysics 89: 359–377

    Google Scholar 

  • Le Fort P (1986) Metamorphism and magmatism during the Himalayan collision. In: Coward M P, Ries A C (eds) Collision Tectonics. Geol Soc Spec Publ 19: 159–172

    Google Scholar 

  • Le Fort P, Cuney M, Deniel C, France-Laccord C, Shepperd S M F, Upreti B N, Vidal P (1987) Crustal generation of the Himalayan leucogranites. Tectonophysics 134: 39–57

    Google Scholar 

  • Le Pichon X, Huchon P (1984) Geoid, Pangea and convection. Earth Planet Sci Lett 67: 123–135

    Google Scholar 

  • Le Pichon X, Francheteau J, Bonnin J (1973) Plate tectonics. Elsevier, Amsterdam, 300 pp

    Google Scholar 

  • Lewis J S, Prinn R G (1984) Planets and their atmospheres. Academic Press, New York. London, 470 pp

    Google Scholar 

  • Lindgren W (1933) Mineral deposits. McGraw-Hill, New York 930 pp

    Google Scholar 

  • Lowe, D R, Byerly G R (1986) The rock components and structures of Archean greenstone belts: an overview. In: Workshop in tectonic evolution of greenstone belts. Lun Planet Inst, Houston, pp 9–14

    Google Scholar 

  • Lowman P D (1989) Comparative planetology and the origin of continental crust. Precambrian Res 44: 171–195

    Google Scholar 

  • Macgregor A M (1951) Some milestone in the Precambrian of Southern Rhodesia. Proc Geol Soc S Afr 54:XXVII–IXXI

    Google Scholar 

  • Marmont S (1987) Ore deposits models #13. Uncomformity-type uranium deposits. Geosci Canada 14: 219–229

    Google Scholar 

  • Martini, J E J (1988) As-Zn mineralisation associated with a Proterozoic geothermal system in the Rooiberg Group. S Afr J Geol 91: 337–345

    Google Scholar 

  • Meyer C (1981) Ore forming processes in geologic history. Econ Geol 75th Anniv Vol: 6–41

    Google Scholar 

  • Meyer C (1988) Ore deposits as guides to geological history of the Earth. Annu Rev Earth Planet Sci 16: 147–171

    Google Scholar 

  • Minter W E L (1978) A sedimentological synthesis of placer gold uranium and pyrite concentrations in Proterozoic Witwatersrand sediments. In: Miall A D (ed) Fluvial sedimentology. Can Soc Petrol Geol Mem 5: 801–829

    Google Scholar 

  • Minter W E L, Hill W C N, Kidger R J, Kingsley C S, Snowden P A (1986) The Welkom Goldfield. In: Anhaeusser C R, Maske S (eds) Mineral deposits of Southern Africa, vol 1. Geol Soc S Afr, pp 497–540

    Google Scholar 

  • Mitchell A H G, Garson M S (1981) Mineral deposits and global tectonic settings. Academic Press, New York, London, 405 pp

    Google Scholar 

  • Molnar P (1984) Structure and tectonics of the Himalaya: constraints and implications of geophysical data. Annu Rev Earth Planet Sci 12: 489–518

    Google Scholar 

  • Molnar P, Tapponier P (1975) Cenozoic tectonics of Asia: effects of a continental collision. Science 189: 419–426

    Google Scholar 

  • Moorbath S (1977) Ages, isotopes and evolution of Precambrian continental crust. Chem Geol 20: 151–187

    Google Scholar 

  • Morel P, Irving E (1978) Tentative palaeocontinental maps for the early Phanerozoic and Proterozoic. J Geol 86: 535–561

    Google Scholar 

  • Morel P, Irving E (1981) Palaeomagnetism and the evolution of Pangea. J Geophys Res 86: 1858–1872

    Google Scholar 

  • Morrison G W 1988 Palaeozoic gold deposits of northeast Queensland. In: Bicentennial Gold ’88. Geo Soc Aust Abstr Ser 22: 91–101

    Google Scholar 

  • Murray C G 1990 Tasman fold belt in Queensland. In: Hughes F E (ed) Geology of the mineral deposits of Australia and Papua New Guinea, vol 2. Australas Inst Min Metall Monogr 14, Parkville, Victoria, pp 1431–1450

    Google Scholar 

  • Naldrett A J (1965) The role of sulphurisation in the genesis of iron-nickel deposits of the Porcupine District, Ontario. Can Inst Min Metall Bull 59: 489–497

    Google Scholar 

  • Naldrett A J (1973) Nickel sulfide deposits - their classification and genesis, with special emphasis on deposits of volcanic association. Can Inst Min Metall Bull 76: 183–201

    Google Scholar 

  • Nance R D, Worsley T R, Moody J B (1988) The supercontinent cycle. Sci Am 259: 44–52

    Google Scholar 

  • Nur A, Ben-Avraham Z (1982) Oceanic plateaux, the fragmentation of continents, and mountain building. J Geophys Res 87: 3644–3661

    Google Scholar 

  • Palfreyman W D (1984) Guide to the geology of Australia. Bur Mineral Resour Aust Bull 181, III pp

    Google Scholar 

  • Paull P L, Hodkinson I P, Morrison G W, Teale G S 1990 Mount Leyshon gold deposit. In: Hughes F E (ed) Geology of the mineral deposits of Australia and Papua New Guinea, vol 2. Australas Inst Min Metall Monogr 14, Parkville, Victoria, pp 1471–1481

    Google Scholar 

  • Phillips G N (1987) Metamorphism of the Witwatersrand goldfields: conditions during peak metamorphism. J Metamorph Geol 5: 307–322

    Google Scholar 

  • Phillips G N, Groves D I (1983) The nature of Archean gold-bearing fluids as deduced from gold deposits of Western Australia. J Geol Soc Aust 30: 25–40

    Google Scholar 

  • Phillips G N, Myers R E, Law J D M, Bailey A C, Cadle A B, Beneke D, Borrego P M D A, Giusti L, Ingle L, Kerr S J, Palmer J A, Ramos Z C D N, Robertson S (1988) Recent advances in the geology of the Witwatersrand goldfields, including the importance of post-depositional processes. In: Bicentennial Gold ’88. Geol Soc Aust Abstr Ser 22: 319–324

    Google Scholar 

  • Piper J D A (1973) Geological interpretation of palaeomagnetic results from the African Precambrian. In: Tarling D H, Runcorn S K (eds) Implications of continental drift to the Earth Sciences. Academic Press, New York, London, pp 19–32

    Google Scholar 

  • Piper J D A (1982) The Precambrian palaeomagnetic record: the case for the Proterozoic supercontinent. Earth Planet Sci Lett 59: 61–89

    Google Scholar 

  • sPorada H (1985) Stratigraphy and facies in the upper Proterozoic Damara orogen, Namibia, based on a geodynamic model. Precambrian Res 29: 235–264

    Google Scholar 

  • Porter R R G 1990 Pajingo gold deposits. In: Hughes F E (ed) Geology of the mineral deposits of Australia and Papua New Guinea, vol 2. Australas Inst Min Metall Monogr 14, Parkville, Victoria, pp 1483–1487

    Google Scholar 

  • Powell C McA (1983) Tectonic relationship between the late Ordovician and late Silurian palaeogeographies of southeastern Australia. J Geol Soc Aust 30: 353–373

    Google Scholar 

  • Pretorius D A (1976a) The nature of the Witwatersrand gold-uranium deposits. In: Wolf KH (ed) Handbook of stratabound and stratiform ore deposits, vol 7. Elsevier, Amsterdam, pp 29–88

    Google Scholar 

  • Pretorius D A (1976b) Gold in the Proterozoic sediments of South Africa: systems, paradigms and models. In: Wolf K H (ed) Handbook of stratabound and stratiform ore deposits, vol 7. Elsevier, Amsterdam, pp 1–27

    Google Scholar 

  • Pretorius D A (1986) The goldfields of the Witwatersrand basin. In: Anhaeusser C R, Maske S (eds) Mineral deposits of southern Africa, vol 1. Geol Soc S Afr, pp 489–494

    Google Scholar 

  • Rankine G M (1987) Gold metallogeny in Australia. MSc thesis, Rhodes Univ, Grahamstown, S Afr 116 pp

    Google Scholar 

  • Read H H, Watson J (1975) Earth history, Vol 2, pt 1,2. Compton Pitman, London, 371 pp

    Google Scholar 

  • Reeve J S, Cross K C, Smith R N, Oreskes N 1990 Olympic Dam copper-uranium-gold-silver deposit. In: Hughes F E (ed) geology of the mineral deposits of Australia and Papua New Guinea, vol 2. Australas Inst Min Metall Monogr 14, Parkville, Victoria, pp 1009–1035

    Google Scholar 

  • Rickard D (1987) Proterozoic volcanogenic mineralisation styles. In: Pharaoh T C, Beckinsale R D, Rickard D (eds) Geochemistry and mineralisation of Proterozoic volcanic suites. Geol Soc Spec Publ 33: 23–35

    Google Scholar 

  • Roberts D E, Hudson G R T (1983) The Olympic Dam copper-uraniumgold deposit, Roxby Downs, South Australia. Econ Geol 78: 799–822

    Google Scholar 

  • Robertson D S, Tisley J E, Hogg G M, (1978) The time-bound character of uranium deposits. Econ Geol 73:1409–14(19

    Google Scholar 

  • Rozendaal A (1978) The Gamsberg zinc deposit, Namaqualand. In: Verwoerd W J (ed) Mineralisation in metamorphic terranes. Spec Publ Geol Soc S Afr 4: 235–265

    Google Scholar 

  • Sawkins F J (1990) Metal deposits in relation to plate tectonics, 2nd edn. Springer, Berlin, Heidelberg, New York, 461 pp

    Google Scholar 

  • Schermer E R, Howell D G, Jones D L (1984) The origin of allochthonous terranes: perspectives on the growth and shaping of continents. Annu Rev Earth Planet Sci 12: 107–131

    Google Scholar 

  • Scotese C R, Bambach R K, Barton C, Van der Voo R, Ziegler A Y (1979) Palaeozoic base maps. J Geol 87: 217–277

    Google Scholar 

  • Sengör A M C (1979) Mid-Mesozoic closure of Permo-Triassic Tethys and its implications. Nature (London) 279: 590–593

    Google Scholar 

  • Sengor A M C (1981) The geological exploration of Tibet. Nature (London) 294: 403–404

    Google Scholar 

  • Sengor A M C (1987) Tectonics of the Thethysides: orogenic collage development in a collisional setting. Annu Rev Earth Planet Sci 15: 213–244

    Google Scholar 

  • Sims P K (1980) Subdivisions of the Proterozoic and Archean eon: Reconstructions and suggestions by the International Subcommision on Precambrian Stratigraphy. Precambrian Res 13: 379–380

    Google Scholar 

  • Smith A G, Briden J C (1977) Mesozoic and Cenozoic paleocontinental maps. Univ Press, Cambridge, 63 pp

    Google Scholar 

  • Smith A G, Hurley A M, Briden J C (1981) Phanerozoic paleocontinental world maps. Univ Press, Cambridge, 102 pp

    Google Scholar 

  • Smith B, Christiansen R L (1980) Yellowstone Park as a window on the Earth’s interior. Sci Am 242: 84–97

    Google Scholar 

  • Smith J (1981) The first 800 million years of Earth’s history. Phil Trans R Soc London Ser A301: 401–422

    Google Scholar 

  • Solomom M, Griffiths J R (1972) Tectonic evolution of the Tasman Orogenic Zone, eastern Australia. Nature (London) 70: 3–6

    Google Scholar 

  • Stoeser D B, Camp E (1985) Pan-African microplate accretion of the Arabian Shield. Geol Soc Am Bull 96: 817–826

    Google Scholar 

  • Sutton J (1963) Long-term cycles in the evolution of the continents. Nature (London) 198: 731

    Google Scholar 

  • Swinden H S, Strong D F (1976) A comparison of plate tectonic models of metallogenesis in the Appalachians, the North American Cordillera, and the East Australian Paleozoic. In: Strong D F (ed) Metallogeny and plate tectonics. Geol Ass Can Spec Pap 14: 441–470

    Google Scholar 

  • Tankard A J, Jackson M P A, Erikson K A, Hobday D K, Hunter D R, Minter W E L (1982) Crustal evolution of Southern Africa — 3.8 billion years of earth history. Springe, Berlin, Heidelberg, 523 pp

    Google Scholar 

  • Tapponier P, Peltzer G, Le Dain A Y, Armijo R, Cobbold P 1982 Propagating extrusion tectonics in Asia: insights from simple experiments with plasticine. Geology 10: 611–616

    Google Scholar 

  • Tarling D H, Runcorn S K, (eds) (1973) Implications of continental drift to the earth sciences. Nato Advanced Study Inst, Vol 1, 2. Academic Press, New York, London, 1184 pp

    Google Scholar 

  • Tarney J, Dalziel, IW D, De Wit M J (1976) Marginal basin “rocas verdes” Complex from S Chile: A model for Archean greenstone belt formation. In: Windley B F (ed) The early history of the Earth. John Wiley & Sons, New York, pp 131–146

    Google Scholar 

  • Taylor S R, McLennan S M (1985) The continental crust: its composition and evolution. Blackwell, Oxford, 312 pp

    Google Scholar 

  • Tectonophysics (ed) (1989) Subduction Zones: the Kaiko project. Tectonophysics 160 1 /4

    Google Scholar 

  • Vearncombe J R, Barton, J M, Van Reenen D D, Phillips G N, Wilson A H (1986) Greenstone belts: their components and structures. In: Workshop on tectonic evolution of greenstone belts. Lun Planet Inst. Houston, pp 19–26

    Google Scholar 

  • Watson J (1973) Influence of crustal evolution on ore deposition. Trans Inst Min Metall 82: B107–B114

    Google Scholar 

  • Watson J (1978) Ore-deposition through geological time. Proc R Soc London Ser A 362: 305–328

    Google Scholar 

  • Williams H, Hatcher R D (1982) Suspect terranes and accretionary history of the Appalachian orogen. Geology 10: 530–536

    Google Scholar 

  • Wilson J T (1963) Evidence from islands on the spreading of ocean floors. Nature (London) 197: 536: 538

    Google Scholar 

  • Wilson J T (1965) A new class of faults and their bearing on continental drift. Nature (London) 207: 343–538

    Google Scholar 

  • Wilson J T (1966) Did the Atlantic close and then re-open? Nature (London) 211: 676

    Google Scholar 

  • Wilson J T (ed) (1973) Continents Adrift. Readings from Scientific American. Freeman, San Francisco, 172 pp

    Google Scholar 

  • Windley B F (1984) The evolving continents, 2nd edn. John Wiley and Sons, Chichester, 399 pp

    Google Scholar 

  • Windley B F, Smith J (1976) Archean high-grade complexes and modern continental margins. Nature (London) 260: 671–675

    Google Scholar 

  • Worst B G (I960) The Great Dyke of Southern Rhodesia Southern Rhodesia. Geol Surv Bull 47

    Google Scholar 

  • Wyllie P J (1971) The dynamic Earth. John Wiley & Sons, New York, 416 pp

    Google Scholar 

  • Zonenshain L P, Korinevsky G, Kazmin G, Pechersky D M, Khain V V, Matveenkov V V (1984) Plate tectonic model of the South Urals development. Tectonophysics 109: 95–135

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pirajno, F. (1992). Crustal Evolution, Global Tectonics and Mineral Deposits. In: Hydrothermal Mineral Deposits. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75671-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75671-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75673-3

  • Online ISBN: 978-3-642-75671-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics