Skip to main content

Long-Term Modulation of Hypothalamic Neurons by Neuropeptides

  • Conference paper
Thermoreception and Temperature Regulation

Abstract

Concepts of neuronal integration of peripheral and central temperature signals are based on the assumption that specific warm- and cold-sensitive neurons in the preoptic and anterior hypothalamic area and ascending fibres of the afferent warm and cold pathway converge onto integrative neurons, which in turn transfer the integrated signal to neurons which are insensitive to local temperature changes (Hammel 1968; Bligh 1979). In these models it is inherent that a particular neuron is either sensitive or insensitive to temperature changes, and that temperaturesensitive neurons are either warm- or cold-sensitive. However, a temperature dependence of signal processing in integrative neuronal networks of the hypothalamus has also been considered (Simon 1981). In addition, it has been observed that after blockade of synaptic transmission, some warm-sensitive neurons were converted to cold-sensitive ones and vice versa, suggesting that the temperature characteristic depends to a great extent on the variable synaptic input (Pierau and Nakashima 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Björklund A, Hökfelt T (1985) Gaba and neuropeptides in the CNS. Part 1. Elsevier, Amsterdam.

    Google Scholar 

  • Bligh J (1979) The central neurology of mammalian thermoregulation. Neuroscience 4:1213–1236.

    Article  PubMed  CAS  Google Scholar 

  • Boulant JA (1986) Single neuron studies and their usefulness in understanding thermoregulation. Yale J Biol Med 59:179–188.

    PubMed  CAS  Google Scholar 

  • Boulant JA, Dean JB (1986) Temperature receptors in the central nervous system. Annu Rev Physiol 48:639–654.

    Article  PubMed  CAS  Google Scholar 

  • Brown M, Rivier J, Vale W (1977) Bombesin: Potent effects on thermoregulation in the rat. Science 196:998–1000.

    Article  PubMed  CAS  Google Scholar 

  • Cabanac M, Stolwijk AJ, Hardy JD (1968) Effect of temperature and pyrogens on single unit activity in the rabbit’s brain stem. J Appl Physiol 24:645–652.

    PubMed  CAS  Google Scholar 

  • Clark WG, Lipton JM (1983) Brain and pituitary peptides in thermoregulation. Pharmacol Ther 22:249–297.

    Article  PubMed  CAS  Google Scholar 

  • Cohn ML, Cohn M, Traube D (1980) Thyreotropin releasing hormone induced hyperthermia in the rat inhibited by lysine acethylsalicylate and indometacin. In: Cox B, Lomax P, Milton AS, Schönbaum E (eds) Thermoregulatory mechanisms and their therapeutic implications. Karger, Basel, pp 198–201.

    Google Scholar 

  • Eisenman JS (1969) Pyrogen-induced changes in the thermosensitivity of septal and preoptic neurons. Am J Physiol 216:330–334.

    PubMed  CAS  Google Scholar 

  • Gale CC, McCreery BR (1979) Mechanism of bombesin hypothermia. Fed Proc 38:977.

    Google Scholar 

  • Hammel HT (1968) Regulation of internal body temperature. Annu Rev Physiol 30:641–710.

    Article  PubMed  CAS  Google Scholar 

  • Hori T, Nakashima T, Hori N, Kiyohara T (1980a) Thermo-sensitive neurons in hypothalamic tissue slices in vitro. Brain Res 186:203–207.

    Article  PubMed  CAS  Google Scholar 

  • Hori T, Nakashima T, Kiyohara T, Shibata M, Hori N (1980b) Effect of calcium removal on thermosensitivity of preoptic neurons in hypothalamic slices. Neurosci Lett 20:171–175.

    Article  PubMed  CAS  Google Scholar 

  • Jansky L, Vybiral S, Moravec J, Nachazel J, Riedel W, Simon E (1986) Neuropeptides and temperature regulation. J Therm Biol 11:79–83.

    Article  CAS  Google Scholar 

  • Jansky L, Riedel W, Simon E, Simon-Oppermann C, Vybiral S (1987) Effect of bombesin on thermoregulation of the rabbit. Pflügers Arch 409:318–322.

    PubMed  CAS  Google Scholar 

  • Kelso SR, Boulant JA (1982) Effect of synaptic blockade on thermosensitive neurons in hypothalamic tissue slices. Am J Physiol 243:R480–R490.

    PubMed  CAS  Google Scholar 

  • Nakashima T, Hori T, Kiyohara T, Shibata M (1984) Effects of local osmolality changes on medial preoptic thermosensitive neurones in hypothalamic slices in vitro. In: Hales JRS (ed) Thermal physiology Raven, New York, pp 133–136.

    Google Scholar 

  • Nakashima T, Pierau Fr-K, Simon E, Hori T (1987) Comparison between hypothalamic thermoresponsive neurons from duck and rat slices. Pflügers Arch 409:236–243.

    PubMed  CAS  Google Scholar 

  • Nemeroff CB, Luttinger D, Prange AJ Jr (1983) Neurotensin and bombesin. In: Iversen LL, Iversen SD, Snyder SH (eds) The handbook of psychopharmacology. Volume 16. Plenum, New York, pp 363–466.

    Chapter  Google Scholar 

  • Panula P, Yang H-YT, Costa E (1984) Comparative distribution of bombesin/ CGRP-and substance P-like immunoreactivities in rat hypothalamus. J Comp Neurol 244:606–617.

    Article  Google Scholar 

  • Pierau Fr-K, Nakashima T (1986) The usefulness and limitations of single neuron recordings in evaluating the neural control of temperature regulation. Yale J Biol Med 59:205–219.

    PubMed  CAS  Google Scholar 

  • Schmid H, Pierau Fr-K (1988) Modulation of the activity and temperature response of neurones in hypothalamic slices by different Ca2+-concentrations. Pflügers Arch 411:R131.

    Google Scholar 

  • Scott IM, Boulant JA (1984) Dopamine effects on thermosensitive neurons in hypothalamic tissue slices. Brain Res 306:157–163.

    Article  PubMed  CAS  Google Scholar 

  • Simon E (1981) Effects of CNS temperature on generation and transmission of temperature signals in homeotherms: A common concept for mammalian and avian thermoregulation. Pflügers Arch 392:79–88.

    Article  PubMed  CAS  Google Scholar 

  • Tamaki Y, Nakayama T (1987) Effects of air constituents on thermosensitivities of preoptic neurons: Hypoxia versus hypercapnia. Fflügers Arch 409:1–6.

    Article  CAS  Google Scholar 

  • Vieth E, Ludwig O (1987) Estimation of join points between different ranges of stimulus response relationships. Pflügers Arch 408:R84–R84.

    Google Scholar 

  • Wolf SS, Moody TW (1985) Receptors for CGR/bombesin-like peptides in the rat forebrain. Peptides 6:106–114.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmid, H., Pierau, FK. (1990). Long-Term Modulation of Hypothalamic Neurons by Neuropeptides. In: Bligh, J., Voigt, K., Braun, H.A., Brück, K., Heldmaier, G. (eds) Thermoreception and Temperature Regulation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75076-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75076-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75078-6

  • Online ISBN: 978-3-642-75076-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics