Skip to main content

Aminosäurestoffwechsel bei Urämie

  • Conference paper
Nephrologie

Part of the book series: Innovative Aspekte der Klinischen Medizin ((KLIN MED,volume 1))

Zusammenfassung

Es weist vieles darauf hin, daß ein gestörter Eiweiß- und Aminosäurestoffwechsel bei chronischem Nierenversagen eine zentrale Rolle spielt [10, 11]. Urämiepatienten zeigen bekanntlich eine Neigung zu negativer Stickstoffbilanz und zum Verlust von Muskelmasse. Zudem verlieren Patienten unter Erhaltungsdialyse durch das Dialyseverfahren Aminosäuren, womit die Eiweißverarmung verstärkt wird. Der Eiweiß- und Aminosäurebedarf scheint bei Urämie höher zu sein als bei gesunden Probanden [24, 39, 52, 89]. Der wesentliche Zweck vorliegender Zusammenstellung besteht in der Beschreibung bestimmter Veränderungen des Aminosäurestoffwechsels im extra- und intrazellulären Raum, in der Interpretation der für diese Veränderungen verantwortlichen Faktoren und der Beurteilung der therapeutischen Implikationen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alvestrand A (1983) Amino acid and glucose metabolism in patients with chronic renal failure. Thesis, Karolinska Institute, Stockholm

    Google Scholar 

  2. Alvestrand A, Bergström J, Fürst P (1979) Intracellular free amino acids in patients treated with regular haemodialysis ( HD ). Proc Eur Dial Transplant Assoc 16: 129–134

    PubMed  CAS  Google Scholar 

  3. Alvestrand A, Ahlberg M, Bergström J, Fürst P (1981) The effect of nutritional regimens on branched chain amino acid (BCAA) antagonism in uremia. In: Walser M, Williamson JR (eds) Metabolism and clinical implications of branched chain amino and ketoacids. Elsevier, North Holland, pp 605–613

    Google Scholar 

  4. Alvestrand A, Fürst P, Bergström J (1982) Plasma and muscle free amino acids in uremia: influence of nutrition with amino acids. Clin Nephrol 18: 297–305

    PubMed  CAS  Google Scholar 

  5. Alvestrand A, Fürst P, Bergström J (1983a) Intracellular amino acids in uremia. Kidney Int 24 [Suppl] 16: 9–16

    Google Scholar 

  6. Alvestrand A, Ahlberg M, Fürst P, Bergström J (1983b) Clinical results of long-term treatment with a low protein diet and new amino acid preparation in patients with chronic uremia. Clin Nephrol 19: 67–73

    PubMed  CAS  Google Scholar 

  7. Alvestrand A, De Fronzo RA, Smith D, Wahren J (1987) Influence of hyperinsulinemia on intracellular amino acid levels and amino acid exchange across splanchnic and leg tissues in uremia. Clin Sci

    Google Scholar 

  8. Austin SA, Clemens MJ (1981) The regulation of protein synthesis in mammalian cells by amino acid supply. Biosci Rep 1: 35–42

    Article  PubMed  CAS  Google Scholar 

  9. Bergström J, Alvestrand A (1984) Therapy with branched-chain amino acids and ketoacids in chronic uremia. In: Adibi SA, Fekl W, Langenbeck U (eds) Branched-chain amino acids and ketoacids in health and disease. S.A. Karger, Basel, pp 391–422

    Google Scholar 

  10. Bergström J, Fürst P (1983) Uremic toxins. In: Drukker W, Parsons FM, Maher JF (eds) Replacement of renal function by dialysis, 2nd edn. Nijhoff, Boston The Hague Dordrecht Lancaster, pp 354–390

    Chapter  Google Scholar 

  11. Bergström J, Fürst P (1983) Other uremic toxins. In: Massry SG, Glassock RJ (eds) Textbook of nephrology, vol 2. Williams *amp; Wilkins, Baltimore London, pp 7.8–7.11

    Google Scholar 

  12. Bergström J, Fürst P, Josephson B, Noree LO (1970) Improvement of nitrogen balance in a uremic patient by the addition of histidine to essential amino acid solutions given intravenously. Life Sci 9: 794–797

    Article  Google Scholar 

  13. Bergström J, Fürst P, Noree LO, Vinnars E (1972) The effect of peritoneal dialysis on the intracellular free amino acids in muscle from uremic patients. Proc Eur Dial Transplant Assoc 9: 393

    PubMed  Google Scholar 

  14. Bergström J, Fürst P, Josephson B, Noree LO (1972) Factors affecting the nitrogen balance in chronic uremic patients receiving essential amino acids intravenously or by mouth. Nutr Metab 14: 162–170

    Article  PubMed  Google Scholar 

  15. Bergström J, Bucht H, Fürst P, Hultman E, Josephson B, Noree LO, Vinnars E (1972) Intravenous nutrition with amino acid solutions in patients with chronic uremia. Acta Med Scand 191: 359–367

    PubMed  Google Scholar 

  16. Bergström J, Fürst P, Noree LO (1975) Treatment of chronic uremic patients with protein-poor diet and oral supply of essential amino acids. I. Nitrogen balance studies. Clin Nephrol 3: 187–194

    PubMed  Google Scholar 

  17. Bergström J, Fürst P, Noree LO, Vinnars E (1978) Intracellular free amino acids in muscle tissue of patients with chronic uremia: effect of peritoneal dialysis and infusion of essential amino acids. Clin Sci [Suppl] 54: 51–60

    Google Scholar 

  18. Bergström J, Ahlberg M, Alvestrand A, Fürst P (1978) Metabolic studies with keto acids in uremia. Am J Clin Nutr 31: 1761–1766

    PubMed  Google Scholar 

  19. Bergström J, Alvestrand A, Fürst P (1985) Evaluation of amino acid requirements in uremia by determination of intracellular free amino acid concentrations in muscle. In: Boucot-Cummings N, Klahr S (eds) Chronic Renal Disease. Plenum Publishing, New York, pp 568–571

    Google Scholar 

  20. Bergström J, Qureshi GA, Rashed Qureshi A (1987) Inhibition of cysteine sulphonic acid decarboxylase in chronic renal failure. Abstract Nephrology, Dialysis and Transplantation

    Google Scholar 

  21. Bergström J, Ahlberg M, Alvestrand A, Fürst P (1987) Amino acid therapy for patients with chronic renal failure. Infusionsther Klin Ernähr 14 5: 9–11

    Google Scholar 

  22. Bergström J, Alvestrand A, Fürst P, Lindholm N (in press) Sulpjur amino acids in plasma and muscle in patients with chronic failure; evidence for taurine depletion. Clin Sci

    Google Scholar 

  23. Biasioli S, D’Andrea GM, Feriani M, Charmonte S, Fabris A, Ronco C, La Greca G (1986) Uremic encephalopathy; an updating. Clin Nephrol 25: 57–63

    PubMed  CAS  Google Scholar 

  24. Borah MF, Schönfeld PY, Gotch FA, Sargent IA, Wolfson M, Humphreys MH (1978) Nitrogen balance during intermittent dialysis therapy of uremia. Kidney Int 14: 491–500

    Article  PubMed  CAS  Google Scholar 

  25. Brown CL, Houghton BJ, Souhami RL, Richards P (1972) The effects of low-protein diet and uremia upon urea cycle enzymes and transaminases in rats. Clin Sci 43: 371–376

    PubMed  CAS  Google Scholar 

  26. Budd MA, Tanaka K, Holmes LB, Efron ML, Crawford JD, Isselbacher KJ (1967) Isovaleric acidemia: clinical features of a new genetic defect of leucine metabolism. N Engl J Med 277: 321–327

    Article  PubMed  CAS  Google Scholar 

  27. Cernacek P, Becvarova H, Gerova Z, Valek A, Spustova V (1980) Plasma tryptophan level in chronic renal failure. Clin Nephrol 14: 246–249

    PubMed  CAS  Google Scholar 

  28. Chami J, Reidenberg MM, Wellner D, David DS, Rubin AL, Stenzel KH (1978) Pharmacokinetics of essential amino acids in chronic dialysis patients. Am J Clin Nutr 31: 1652–1659

    PubMed  CAS  Google Scholar 

  29. Chan W, Wang M, Kopple JD, Swendseid MD (1974) Citrulline levels and urea cycle enzymes in uremic rats. J Nutr 104: 678–683

    PubMed  CAS  Google Scholar 

  30. Connelly JL, Danner DJ, Bowden JA (1968) Branched chain alpha-ketoacid metabolism I. Isolation, purification and partial characterization of bovine liver alpha-keto-isocaproic: alpha-keto-beta-methylvaleric acid dehydrogenase. J Biol Chem 243: 1198–1203

    PubMed  CAS  Google Scholar 

  31. Druml W, Burger U, Kleinberger G, Lenz K, Laggner A (1986) Elimination of amino acids in renal failure. Nephron 42: 62–67

    Article  PubMed  CAS  Google Scholar 

  32. Dunglison R (1845, 1853, 1854, 1857, 1868 ) Medical Lexicon — A Dictionary of Medical Science. Blanchard & Lea, Philadelphia

    Google Scholar 

  33. Epstein CM, Chawla RK, Wadsworth A, Rudman D (1980) Decarboxylation of alphaketoisovaleric acid after oral administration in man. Am J Clin Nutr 53: 1968–1974

    Google Scholar 

  34. Fernstrom JD, Wurtman RJ (1972) Brain serotonin content: physiological regulation by plasma neutral amino acids. Science 178: 414–417

    Article  PubMed  CAS  Google Scholar 

  35. De Fronzo RA, Nadres R, Edgar P, Walker WG (1973) Carbohydrate metabolism in uremia. A review. Medicine 52: 469–481

    Article  Google Scholar 

  36. De Fronzo RA, Smith D, Alvestrand A (1983) Insulin action in uremia. Kidney Int 24 16: 102–114

    Google Scholar 

  37. Fürst P (1972) 15N-studies in severe renal failure. II. Evidence for the essentiality of histidine. Scand J Clin Lab Invest [Suppl] 30:307–312

    Article  PubMed  Google Scholar 

  38. Fürst P (1985) Regulation of intracellular metabolism of amino acids. Sir Arvid Wretlind Lecture. In: Bozzetti F, Dionigi R (eds) Nutrition in cancer and trauma sepsis. Karger, Basel, pp 21–53

    Google Scholar 

  39. Fürst P, Alvestrand A, Bergström J (1980) Effects of nutrition and catabolic stress on intracellular amino acid pools in uremia. Am J Clin Nutr 33: 1387

    PubMed  Google Scholar 

  40. Giordano C, De Pascale L, Philips M, De Santo N, Fürst P, Richards P (1972) Utilization of ketoacid analogues of valine and phenylalanine in health and uremia. Lancet I: 178–182

    Article  Google Scholar 

  41. Giordano C, De Santo NG, Rinaldi S, De Pascale C, Pluvio M (1972) Histidine and glycine essential amino acids in uremia. In: Kluthe R, Berlyne G, Burton B (eds) Uremia: An international conference on pathogenesis, diagnosis, and therapy. Thieme, Stuttgart, pp 138–143

    Google Scholar 

  42. Gulyassy PF, de Torrente A (1975) Tryptophan metabolism in uremia. Kidney Int 7: 311–315

    Google Scholar 

  43. Gulyassy PF, Aviram A, Peters JH (1970) Evaluation of amino acid and protein requirements in chronic uremia. Arch Intern Med 7: 855–859

    Article  Google Scholar 

  44. Gulyassy PF, Peters JH, Schoenfeld P (1972) Transport and protein binding of tryptophan in uremia. In: Kluthe R, Berlyne G, Burton B (eds) Uremia: An international conference on pathogenesis, diagnosis and therapy. Thieme, Stuttgart, pp 163–170

    Google Scholar 

  45. Halliday D, Madigan M, Chalmers RA, Purhiss P, Ell S, Bergström J, Fürst P, Neuhäuser M, Richards P (1981) The degree of conversion of alpha-ketoacids to valine and phenylalanine in health and uremia. Q J Med 50: 53–62

    PubMed  CAS  Google Scholar 

  46. Harker LA, Ross R, Slichter SJ, Scott CR (1976) Homocystine-induced arteriosclerosis. The role of endothelial cell injury and platelet response in its genesis. J Clin Invest 58: 731–741

    Article  PubMed  CAS  Google Scholar 

  47. Harper AE (1964) Amino acid toxicities and imbalances. In: Munro HN, Allison JB (eds) Mammalian Protein Metabolism, vol II. Academic Press, New York, pp 87–134

    Google Scholar 

  48. Hayes KC, Sturman JA (1981) Taurine in metabolism. Annu Rev Nutr I: 401–425

    Article  Google Scholar 

  49. Ichihara A, Koyama E (1966) Transaminase of branched chain amino acids. I. Branched chain amino acids-alpha-ketoglutarate transaminase. J Biochem (Tokyo) 59: 160–169

    CAS  Google Scholar 

  50. Jones MR, Kopple JD (1978) Valine metabolism in normal and chronically uremic man. Am J Clin Nutr 31: 1660–1664

    PubMed  CAS  Google Scholar 

  51. Jones MR, Kopple JD, Swendseid ME (1978) Phenylalanine metabolism in uremic and normal man Kidney Int 14: 169–179

    Article  PubMed  CAS  Google Scholar 

  52. Kopple JD (1983) Amino acid metabolism in chronic renal failure. In: Blackburn GL, Grant JP, Young VR (eds) Amino acids. Metabolism and medical applications. John Wright PSG, Boston, pp 451–471

    Google Scholar 

  53. Kopple JD (1983) Nitrogen metabolism. In: Massrys SG, Glassock RJ (eds) Textbook of nephrology, vol. 2. pp 7.79–7.87

    Google Scholar 

  54. Kopple JD, Swendseid ME (1974) Nitrogen balance and plasma amino acid levels in uremic patients fed an essential amino acid diet. Am J Clin Nutr 27: 806–812

    PubMed  CAS  Google Scholar 

  55. Kopple JD, Swendseid ME (1975) Evidence that histidine is an essential amino acid in normal and chronically uremic man. J Clin Invest 55: 881–891

    Article  PubMed  CAS  Google Scholar 

  56. Kopple JD, Swendseid ME (1976) Effect of protein intake and uremia on plasma amino acid levels, Kidney Int 10: 560–568

    Google Scholar 

  57. Kopple JD, Swendseid ME (1978) Effect of histidine intake on plasma and urine. Histidine levels, nitrogen balance and N-methyl-histidine excretion in normal and chronically uremic men. J Nutr III: 931–942

    Google Scholar 

  58. Kopple JD, Mercurio K, Blumenkranz MJ et al. (1981) Daily requirement for pyridoxine supplements in chronic renal failure. Kidney Int 19: 694–704

    Article  PubMed  CAS  Google Scholar 

  59. Kopple JD, Flugel R, Jones MR (1981) Branched-chain amino acids in chronic renal failure. In: Walser M, Williamson JR (eds) Metabolism and clinical implications of branched chain amino and ketoacids. Developments in Biochemistry, vol 18. Elsevier, North Holland New York, pp 555–567

    Google Scholar 

  60. Laouari D, Kamoun PP, Rocchiccioli F, Dodu C, Kleinknecht C, Broyer M (1986) Efficiency of substitution of 2-ketoisocaproic acid and 2-ketoisovaleric acid in the diet of normal and uremic growing rats. Am J Clin Nutr 44: 832–846

    PubMed  CAS  Google Scholar 

  61. Letteri JM, Scipione RA (1974) Phenylalanine metabolism in chronic renal failure. Nephron 13: 365–371

    Article  PubMed  CAS  Google Scholar 

  62. Maier KP, Hoppe-Seyler G, Talke H, Fröhlich J, Schollmeyer P, Gerok W (1978) Enzymatic and metabolic studies on carbohydrate and amino acid metabolism in rat liver during acute uremia. Eur J Clin Invest 3: 201–207

    Article  Google Scholar 

  63. Mc Coy RH, Meyer CE, Rose WC (1935) Feeding experiments with mixtures of highly purified amino acids. VIII. Isolation and identification of a new essential amino acid. J Biol Chem 112: 283–302

    CAS  Google Scholar 

  64. McKusick VA (1972) Heritable disorders of connective tissue. Mosby, St. Louis, pp 233–236

    Google Scholar 

  65. Mitch WE, Clark AS (1984) Specificity of the effect of leucine and its metabolites on protein degradation in skeletal muscle. Biochem J 222: 579–586

    PubMed  CAS  Google Scholar 

  66. Mitch WE, Steinmann TI (1987) Treatment of progressive chronic renal failure. Implications for changing the composition of amino acid and ketoacid supplements. Contrib Nephrol 55: 28–35

    PubMed  CAS  Google Scholar 

  67. Mitch WE, Walser M (1977) Nitrogen balance of uremic patients receiving branched chain ketoacids and the hydroxy-analogue of methionine as substitutes for the respective amino acids. Clin Nephrol 8: 341–344

    PubMed  CAS  Google Scholar 

  68. Mitch WE, Abras E, Walser M (1982) Long-term effects of a new ketoacid amino acid supplement in patients with chronic renal failure. Kidney Int 22: 48–53

    Article  PubMed  CAS  Google Scholar 

  69. Odessey R, Goldberg AL (1972) Oxidation of leucine by rat skeletal muscle. Am J Physiol 22: 1376–1383

    Google Scholar 

  70. Pickford JC, McGale EHF, Aber GM (1973) Studies on the metabolism of phenylalanine and tyrosine in patients with renal disease. Clin Chim Acta 48: 77–83

    Article  PubMed  CAS  Google Scholar 

  71. Pitts RF (1973) Production and excretion of ammonia in relation to acid-base regulation. In: Orloff J, Berliner RW (eds) Handbook of Physiology. American Physiological Society, Washington DC

    Google Scholar 

  72. Randle PJ (1981) Discussion. In: Walser M, Williamson JR (eds) Metabolism and clinical implications of branched chain amino and ketoacids. Developments in Biochemistry, vol 18. Elsevier, North Holland New York, p 619

    Google Scholar 

  73. Richards P, Brown CL, Houghton BJ, Thompson E (1971) Synthesis of phenylalanine and valine by healthy and uremic men. Lancet II: 128–134

    Article  Google Scholar 

  74. Rippich T, Katz N, Mix A, Kluthe R (1977) Applikation von Ketoanalogen essentieller Aminosäuren bei chronischer Niereninsuffizienz. Z Ernährungswiss [Suppl] 19: 43–54

    Google Scholar 

  75. Rose EC (1949) Amino acid requirements of man. Proc Fedn Am Socs Exp Biol 8: 546

    CAS  Google Scholar 

  76. Rubini ME, Gordon S (1968) Individual plasma-free amino acids in uremics: effects of hemodialysis. Nephron 5: 339–351

    Article  PubMed  CAS  Google Scholar 

  77. Rudman D (1971) Capacity of human subjects to utilize ketoanalogues of valine and phenylalanine. J Clin Invest 50: 90–96

    Article  PubMed  CAS  Google Scholar 

  78. Saito A, Niwa T, Maeda K, Kobayashi K, Yamamaots J, Ohta K (1980) Tryptophan and indolic tryptophan metabolites in chronic renal failure. Am J Clin Nutr 33: 1402–1406

    PubMed  CAS  Google Scholar 

  79. Segal S, Thier SO (1973) Renal handling of amino acids. In: Orloff J, Berliner RW (eds) Handbook of physiology: section 8 renal physiology. American Physiological Society, Washington DC

    Google Scholar 

  80. Shinnic FL, Harper EA (1977) Effects of branched-chain amino acid antagonism in the rat on tissue amino acid and ketoacid concentrations. J Nutr 107: 887–895

    Google Scholar 

  81. Smolin LA, Laidlaw SA, Kopple JD (1987) Altered plasma free and protein-bound sulfur amino acid levels in patients undergoing maintenance hemodialysis. Am J Clin Nutr 45: 737–743

    PubMed  CAS  Google Scholar 

  82. Stonier C, McGale EH, Aber GM (1984) Studies of phenylalanine hydroxylase activity in patients with chronic renal failure: the effect of haemodialysis. Clin Chim Acta 143: 115–122

    Article  PubMed  CAS  Google Scholar 

  83. De Torrente A, Glazer GB, Gulyassy P (1974) Reduced in vitro binding of tryptophan by plasma in uremia. Kidney Int 6: 222–229

    Article  PubMed  Google Scholar 

  84. Walser M (1980) Determinants of ureagenesis with particular references to renal failure, Kidney Int 17: 709–721

    Article  PubMed  CAS  Google Scholar 

  85. Walser M, Lund P, Ruderman NB (1973) Synthesis of essential amino acids from their alpha-ketoanalogues by perfused rat liver and muscle. J Clin Invest 52: 2865–2877

    Article  PubMed  CAS  Google Scholar 

  86. Waterlow JC, Garlick PJ, Millward DJ (1978) Protein turnover in mammalian tissues and in the whole body. Elsevier, North Holland Amsterdam, p 656

    Google Scholar 

  87. Wilcken DLE, Gupta VJ, Reddy SG (1980) Accumulation of sulphur-containing amino acids including cysteine-homocysteine in patients on maintenance haemodialysis. Clin Sci 58: 427–430

    PubMed  CAS  Google Scholar 

  88. Young GA, Parsons FM (1973) Impairment of phenylalanine hydroxylation in chronic renal insufficiency. Clin Sci [Suppl] 45: 89–97

    PubMed  CAS  Google Scholar 

  89. Young VR, Pellett L (1987) Protein intake and requirements with reference to diet and health. Am J Clin Nutr 45: 1323–1343

    PubMed  CAS  Google Scholar 

  90. Young GA, Keogh JB, Parsons FM (1975) Plasma amino acids and protein levels in chronic renal failure and changes caused by oral supplements of essential amino acids. Clin Chim Acta 61: 205

    Article  PubMed  CAS  Google Scholar 

  91. Zimmermann EW, Meisinger E, Weinel B, Strauch M (1979) Essential amino acid/ketoanalogue supplementation: an alternative to unrestricted protein intake in uremia. Clin Nephrol 11: 71–78

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag, Berlin-Heidelberg New York

About this paper

Cite this paper

Fürst, P. (1989). Aminosäurestoffwechsel bei Urämie. In: Gurland, HJ., Koch, K.M., Schoeppe, W., Scigalla, P. (eds) Nephrologie. Innovative Aspekte der Klinischen Medizin, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74961-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74961-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51475-6

  • Online ISBN: 978-3-642-74961-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics