Skip to main content

DNA Recombinants and Transformation of Agricultural Crops

  • Chapter
Plant Protoplasts and Genetic Engineering II

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 9))

  • 255 Accesses

Abstract

Biotechnology offers several potential benefits in agriculture. Two main areas of interest are: (1) the production of improved food crops and (2) the utilization of plants for the production of commercially important products, as is routine in yeasts and other microorganisms. In order to realize the potential of plant genetic engineering, systems which allow the transfer and expression of foreign genes into plant cells must be developed. To date, three main avenues of investigation have been followed to develop such systems, these are: the use of viral vectors, naked DNA transformation, and the natural gene transfer system of Agrobacterium tumefaciens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel PP, Powell P, Nelson RS, De B, Hoffman N, Rogers SG, Fraley RT, Beachy RN (1986) Delay of discase development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232: 738–743

    PubMed  CAS  Google Scholar 

  • An G (1986) Development of plant promoter expression vectors and their use for analysis of differen-tial activity of nopaline synthase promoter in transformed tobacco cells. Plant Physiol 81: 86–91

    PubMed  CAS  Google Scholar 

  • Barker RF, Idler KB, Thompson DV, Kemp JD (1983) Nucleotide sequence of the T-DNA region from the Agrobacterium tumefaciens octopine Ti plasmid pTi15995. Plant Mol Biol 2: 335–350

    CAS  Google Scholar 

  • Barton KA, Binns AN, Matzke AJM, Chilton D-D (1983) Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA, and transmission of T-DNA to R1 progeny. Cell 32: 1033–1043

    PubMed  CAS  Google Scholar 

  • Beachy RN, Chen Z-L, Horsch RB, Rogers SG, Hoffman JJ, Fraley RT (1985) Accumulation and assembly of soybean ß-conglycinin in seeds of transformed petunia plants. EMBO 4 (12): 3047–3053

    CAS  Google Scholar 

  • Bennett J, Jenkings GI, Hartley MR (1984) Differential regulation of the accumulation of the light-harvesting chlorophyll a/b complex and ribulose bisphosphate carboxylase/oxygenase in greening pea leaves. J Cell Biochem 25: 1–13

    PubMed  CAS  Google Scholar 

  • Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucl Acids Res 12:8711– 8721

    PubMed  CAS  Google Scholar 

  • Bevan M, Barnes WM, Chilton M-D (1983 a) Structure and transcription of the nopaline synthase gene region of T-DNA. Nucl Acids Res 11: 369–385

    CAS  Google Scholar 

  • Bevan MW, Flavell RB, Chilton M-D (1983b) A chimaeric antibiotic-resistance gene as a selectable marker for plant cell transformation. Nature (Lond) 304: 184–187

    CAS  Google Scholar 

  • Braun AC (1943) Studies on tumor inception in crown gall disease. Am J Bot 30: 674–677

    Google Scholar 

  • Braun AC (1978) Plant tumours Biochim Biophys Acta 516: 167–191

    CAS  Google Scholar 

  • Braun AC (1982) A history of the crown gall problem. In: Kahl G, Schell J (eds) Molecular biology of plant tumours. Academic Press, New York, pp 155–210

    Google Scholar 

  • Breathnach R, Chambon P (1981) Organization and expression of eukaryotic split genes coding for proteins. Annu Rev Biochem 50: 349–383

    PubMed  CAS  Google Scholar 

  • Brisson N, Paszkowski J, Penswick JR, Gronenborn B, Potrykus I, Hohn T (1984) Expression of a bacterial gene in plants using a viral vector. Nature (Lond) 310: 511–514

    CAS  Google Scholar 

  • Chilton M-D, Drummond MH, Merlo DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid-DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11: 263–271

    PubMed  CAS  Google Scholar 

  • Chilton M-D, Drummond MH, Merlo DJ, Sciaky D (1978) Highly conserved DNA of Ti-plasmids overlaps T-DNA, maintained in plant tumors. Nature (Lond) 275: 147–149

    CAS  Google Scholar 

  • Deak M, Kiss GB, Koncz C, Dudits D (1986) Transformation of Medicago by Agrobacterium-mediated gene transfer. Plant Cell Rep 5: 97–100

    CAS  Google Scholar 

  • De Beuckeleer M, Lemmers M, De Vos G, Willmitzer L, van Montagu M, Schell J (1981) Further insight on the transferred-DNA of octopine crown gall. Mol Gen Genet 183: 283–288

    PubMed  Google Scholar 

  • De Blaere R, Bytebier B, De Greve H, Deboek F, Schell J, van Montagu M, Leemans J (1985) Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. NAR 13 (13):4777–4788

    Google Scholar 

  • De Block M, Herrera-Estrella L, van Montagu M, Schell J, Zambryski P (1984) Expression of foreign genes in regenerated plants and their progeny. EMBO J 3: 1681–1689

    PubMed  Google Scholar 

  • De Block M, Schell J, van Montagu M (1985) Chloroplast transformation by Agrobacterium tumefaciens. EMBO J 4: 1367–1372

    PubMed  CAS  Google Scholar 

  • De Block M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gossele V, Rao Movva N, Thompson C, Van Montagu M, Leemans J (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6 (9): 2513–2518

    PubMed  CAS  Google Scholar 

  • De Frammond AJ, Barton KA, Chilton M-D (1983) Mini Ti: a new vector strategy for plant genetic engineering. Biotechnology 1: 262–269

    Google Scholar 

  • De Greve H, Decraemer H, Seurinck J, Van Montagu M, Schell J (1981) The functional organization of the octopine Agrobacterium tumefaciens plasmid pTiB6S3. Plasmid 6: 235–248

    PubMed  Google Scholar 

  • De Greve H, Dhaese P, Seurinck J, Lemmers M, van Montagu M, Schell J (1982) Nucleotide sequence and transcript map of the Agrobacterium tumefaciens. Ti plasmid-encoded octopine synthase gene. J Mol Appl Genet 1: 499–512

    PubMed  Google Scholar 

  • De la Pena A, Lörz H, Schell J (1987) Transgenic rye plants obtained by injecting DNA into young floral tillers. Nature 325: 274–276

    Google Scholar 

  • Depicker A, Stachel S, Dhaese P, Zambryski P, Goodman HM (1982) Nopaline synthase: transcript mapping and DNA sequence. J Mol Appl Genet 1: 561–574

    PubMed  CAS  Google Scholar 

  • Engler G, Depicker A, Meanhout R, Villarroel-Mandiola R, van Montagu M, Schell J (1981) Physical mapping of DNA base sequence-homologies between an octopine and nopaline Ti-plasmid of Agrobacterium tumefaciens. J Mol Biol 152: 183–208

    PubMed  CAS  Google Scholar 

  • Fluhr R, Kuhlemeier C, Nagy F, Chua N-H (1986) Organ specific and light-induced expression of plant genes. Science 232: 1106–1112

    PubMed  CAS  Google Scholar 

  • Fraley RT, Rogers SG, Horsch RB, Sanders P, Flick J, Adams S, Bittner M, Brand L, Fink C, Fry J, Gallupi G, Goldberg S, Hoffmann N, Woo S (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80: 4803–4807

    PubMed  CAS  Google Scholar 

  • Fraley RT, Rogers SG, Horsch RB, Eichholtz DA, Flick JS, Fink CL, Hoffmann NL, Sanders PR (1985) The SEV system: a new disarmed Ti plasmid vector system for plant transformation. Biotechnology 3: 629–635

    CAS  Google Scholar 

  • Fromm ME, Taylor LP, Walbot V (1985) Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc Natl Acad Sci USA 82: 5824–5828

    PubMed  CAS  Google Scholar 

  • Fromm ME, Taylor LP, Walbot V (1986) Stable transformation of maize after gene transfer by electrophoresis. Nature (Lond) 319: 791–793

    CAS  Google Scholar 

  • Gallagher TF, Ellis RJ (1982) Light-stimulated transcription of genes for two chloroplast polypeptides in isolated pea leaf nuclei. EMBO J 1: 1493–1498

    PubMed  CAS  Google Scholar 

  • Garfinkel DJ, Simpson RB, Ream LW, White F, Gordon MP, Nester EW (1981) Genetic analysis of crown gall: Fine structure map of the T-DNA by site directed mutagenesis. Cell 27: 143–153

    PubMed  CAS  Google Scholar 

  • Gielen J, De Beuckeleer M, Seurinck J, Dechboeck F, De Greve H, Lemmers M, van Montagu M, Schell J (1984) The complete nucleotide sequence of the TL-DNA of Agrobacterium tumefaciens plasmid pTiAch5. EMBO J 3: 825–846

    Google Scholar 

  • Gorman CM, Moffat LF, Howard BH (1982) Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol 2: 1044–1051

    PubMed  CAS  Google Scholar 

  • Hain R, Stabel P, Czernilofsy AP, Steinkiss HH, Herrera-Estrella L, Schell J (1985) Uptake, integration, expression and genetic transmission of a selectable chimaeric gene by plant protoplasts. Mol Gen Genet 199 (2): 161–168

    CAS  Google Scholar 

  • Hepburn AG, Clarke LE, Blundy KS, White J (1983) Nopaline Ti plasmid, pTiT37, T-DNA insertions into a flax genome. J Mol Appl Genet 2: 211–224

    PubMed  CAS  Google Scholar 

  • Hernalsteens JP, van Vliet F, De Beukeleer M, Depicker A, Engler G, Lemmers M, Holsters M, van Montagu M, Schell J (1980) The Agrobacterium tumefaciens Ti plasmid as a host vector system for introducing foreign DNA in plant cells. Nature (Lond) 287: 654–656

    CAS  Google Scholar 

  • Hernalsteens JP, Thia-Toong L, Schell J, van Montagu M (1984) An Agrobacterium-transformed cell culture from the monocot Asparagus officinalis. EMBO J 3: 3039–3041

    PubMed  CAS  Google Scholar 

  • Herrera-Estrella L, Depicker A, van Montagu M, Schell J (1983a) Expression of chimaeric genes transferred into plant cells using a Ti plasmid-derived vector. Nature (Lond) 303: 209–213

    CAS  Google Scholar 

  • Herrera-Estrella L, De Block M, Nessens E, Hernalsteens J-P, van Montagu M, Schell J (1983b) Chimaeric genes as dominant selectable markers in plant cells. EMBO J 2: 987–995

    PubMed  CAS  Google Scholar 

  • Herrera-Estrella L, van den Broeck G, Maenhaust R, van Montagu M, Schell J, Timko M, Cashmore A (1984) Light-inducible and chloroplast associated expression of a chimaeric gene introduced into Nicotiana tabacum using a Ti plasmid vector. Nature (Lond) 310: 115–120

    CAS  Google Scholar 

  • Hinchee MAW, Connor-Ward DV, Newell CA, McDonnell RE, Sato SJ, Grasser CS, Fischhoff DA, Re DB, Fraley RT, Horsch RB (1988) Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Biotechnology 6: 915–922

    CAS  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykas PJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir and T-region of the Agrobacterium tumefaciens Ti plasmid. Nature (Lond) 303: 179–181

    CAS  Google Scholar 

  • Hoekema A, van Haaren MJ, Fellinger AJ, Hooykas PJJ, Schilperoort RA (1985) Non-oncogenic plant vectors for use in the Agrobacterium binary system. Plant Mol Biol 5: 85–95

    CAS  Google Scholar 

  • Hoffman LM, Donaldson DD, Bookland R, Rashka K, Herman EM (1987) Synthesis and protein body deposition of maize 15-kd zein in transgenic tobacco seeds. EMBO J 6: 3213–3221

    PubMed  CAS  Google Scholar 

  • Holsters M, Silva B, van Vliet F, Genetello C, De Block M, Dhaese P, Depicker A, Inzé D, Engler G, Villaroel R, van Montagu M, Schell J (1980) The functional organization of the nopaline A. tumefaciens plasmid pTiC58. Plasmid 3: 212–230

    PubMed  CAS  Google Scholar 

  • Holsters M, Villaroel R, Gielen J, Seurinck J, De Greve H, van Montagu M, Schell J (1983) An analysis of the boundaries of the octopine TL-DNA in tumours induced by Agrobacterium tumefaciens. Mol Gen Genet 190: 35–41

    CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227: 1229–1231

    CAS  Google Scholar 

  • Inzé D, Follin A, van Lijsebettens M, Simoens C, Genetello C, van Montagu M, Schell J (1984) Genetic analysis of the individual T-DNA genes of Agrobacterium tumefaciens; further evidence that two genes are involved in indole-3-acetic acid synthesis. Mol Gen Genet 194: 265–274

    Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion systems. Plant Mol Biol Rep 5: 387–405

    CAS  Google Scholar 

  • Jones JDG, Dunsmuir P, Bedbrook J (1985) High level expression of introduced chimeric genes in regenerated transformed plants. EMBO J 4: 2411–2418

    PubMed  CAS  Google Scholar 

  • Joos H, Inzé D, Caplan A, Sormann M, van Montagu M, Schell J (1983) Genetic analysis of T-DNA transcripts in nopaline crown galls. Cell 32: 1057–1067

    PubMed  CAS  Google Scholar 

  • Klein TM, Wolf ED, Wu R, Sanford JC (1987) High-velocity projectiles for delivering nucleic acids into living cells. Nature 327: 70–74

    CAS  Google Scholar 

  • Klein TM, Gradziel T, Fromm ME, Sanford JC (1988) Factors influencing gene delivery into Zea mays cells by high-velocity projectiles. Biotechnology 6: 559–563

    CAS  Google Scholar 

  • Koncz C, De Greve H, André D, Deboeck F, van Montagu M, Schell J (1983) The octopine synthase genes carried by Ti plasmids contain all signals necessary for expression in plants. EMBO 2: 1597–1603

    CAS  Google Scholar 

  • Koukolikovâ-Nicola A, Shillito RD, Hohn B, Wang K, van Montagu M, Zambryski P (1985) Involvement of circular intermediates in the transfer of T-DNA from Agrobacterium tumefaciens to plant cells. Nature (Lond) 313: 191–196

    Google Scholar 

  • Krens FA, Molenclijk L, Wullems GJ, Schilperoort RA (1982) In vitro transformation of plant protoplasts with Ti plasmid DNA. Nature (Lond) 296: 72

    CAS  Google Scholar 

  • Leemans J, Shaw C, Deblaere R, De Greve H, Hernalsteens J-P, Maes M, van Montagu M, Schell J (1981) Site-specific mutagenesis of Agrobacterium Ti plasmids and transfer of genes to plant cells. J Mol Appl Genet 1: 149–164

    PubMed  CAS  Google Scholar 

  • Leemans J, Deblaere R, Willmitzer L, De Greve H, Hernalsteens J-P, van Montagu M, Schell J (1982) Genetic identification of functions of TL-DNA transcripts in octopine crown galls. EMBO J 1: 147–152

    PubMed  CAS  Google Scholar 

  • Lemmers M, De Beuckeleer M, Holsters M, Zambryski P, Depicker A, Hernalsteens JP, van Montagu M, Schell J (1980) Internal organization, boundaries and integration of Ti-plasmid DNA in nopaline crown gall tumours. J Mol Biol 144: 353–376

    PubMed  CAS  Google Scholar 

  • Li BJ, Langridge WHR, Szalay AA (1985) Somatic embryogenesis and plantlet regeneration in soybean Glycine max. Plant Cell Rept 4: 344–367

    CAS  Google Scholar 

  • Lörz H, Baker B, Schell J (1985) Gene transfer to cereal cells mediated by protoplast transformation Mol Gen Genet 199: 178

    Google Scholar 

  • Marton L, Wullems GJ, Molendijk L, Schilperoort RA (1979) In vitro transformation of cultured cells from Nicotiana tabacum by Agrobacterium tumefaciens Nature (Lond) 277:129–130

    Google Scholar 

  • McCormick S, Niedermeyer J, Fry J, Banason A, Horsch R, Fraley R (1986) Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens Plant Cell Rep 5:81–86

    CAS  Google Scholar 

  • McCabe DE, Swain WF, Martinell BJ, Christou P (1988) Stable transformation of soybean (Glycine max) by particle acceleration. Biotechnology 6: 923–926

    Google Scholar 

  • McGranahan GH, Leslie CA, Uratsu SL, Martin LA, Dandeker AM (1988) Agrobacterium-mediated transformation of walnut somatic embryos and regeneration of transgenic plants. Biotechnology 6:800–804

    CAS  Google Scholar 

  • Messing J, Geraghty D, Heidecker G, Hu N-T, Kridl J, Rubenstein I (1983) Plant gene structure. In: Kosuge T, Meredith CP, Hollaender A (eds) Genetic engineering of plants, and agricultural perspective. Plenum, New York, pp 211–227

    Google Scholar 

  • Morelli G, Nagy F, Fraley RT, Rogers SG, Chua N-H (1985) A short conserved sequence is involved in the light-inducibility of a gene encoding ribulose 1,5-bisphosphate carboxylase small subunit of pea. Nature (Lond) 315: 200–204

    CAS  Google Scholar 

  • Nagy F, Morelli G, Fraley RT, Rogers SG, Chua N-H (1985) Photo regulated expression of a pea rbcS gene in leaves of transgenic plants. EMBO J 4: 3063–3068

    PubMed  CAS  Google Scholar 

  • Otten LA, Schilperoort RA (1978) A rapid microscale method for the detection of lysopine and nopaline dehydrogenase activities. Biochim Biophys Acta 527: 497–500

    PubMed  CAS  Google Scholar 

  • Ow DW, Wood KV, De Luca M, De Wet JR, Helinski DR, Howl SH (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234:856–859

    PubMed  CAS  Google Scholar 

  • Parsons TJ, Sinkar VP, Stetler RF, Nester EW, Gordon MP (1986) Transformation of poplar by Agrobacterium tumefaciens. Biotechnology 4 (6): 533–537

    CAS  Google Scholar 

  • Potrykus I, Saulk M, Petruska J, Paszkowski J, Shillito R (1985) Direct gene transfer to cells of a graminaceous monocot. Mol Gen Genet 199: 183–188

    CAS  Google Scholar 

  • Ranch JP, Oglesby L, Zielinski AC (1985) Plant regeneration from embryo-derived tissue cultures of soybeans. In Vitro Cell Dev Biol II: 653–658

    Google Scholar 

  • Reiss B, Sprengel R, Will H, Schaller H (1984) A new sensitive method for qualitative and quantitative assay of neomycin phospho-transferase in crude cell extracts. Gene 30: 211–218

    PubMed  CAS  Google Scholar 

  • Rhodes CA, Pierce DA, Mettler IJ, Mascarenhas D, Detmer JL (1988) Genetically transformed maize plants from protoplasts. Science 240: 204–207

    PubMed  CAS  Google Scholar 

  • Schröder G, Klipp W, Hillebrand A, Whring R, Koncz C, Schröder J (1983) The conserved part of the T-region in Ti-Plasmids expresses four proteins in bacteria. EMBO J 2: 403–409

    PubMed  Google Scholar 

  • Schröder G, Waffenschmidt S, Wiler EW, Schröder J (1984) The T-region of Ti plasmids codes for an enzyme synthesizing indole-3-acetic acid. Eur J Biochem 138: 387–391

    PubMed  Google Scholar 

  • Sengupta-Gopalan C, Reichert NA, Barker RF, Hall TC, Kemp JD (1985) Proc Natl Acad Sci USA 82: 3320–3324

    PubMed  CAS  Google Scholar 

  • Serfling E, Jasin M, Schaffner W (1985) Enhancer and eukaryotic gene transcription. Trends Genet 1:224–230

    CAS  Google Scholar 

  • Shah DM, Horsch RB, Klee HJ, Kishore GM, Winter JA, Turner NE, Hironata CM, Sanders PR, Gasser CS, Ag Kent S, Siegel NR, Rogers SG, Fraley RT (1986) Engineering herbicide tolerance in trans-genic plants. Science 233: 478–481

    PubMed  CAS  Google Scholar 

  • Shaw CH, Leemans J, Shaw CH, van Montagu M, Schell J (1983) A general method for the transfer of cloned genes to plant cells. Gene 23: 315–330

    PubMed  CAS  Google Scholar 

  • Shaw CH, Watson MD, Carter GH, Shaw CH (1984) The right hand copy of the nopaline Ti-plasmid 25 bp repeat is required for tumour formation. Nucl Acids Res 12: 6031–6041

    PubMed  CAS  Google Scholar 

  • Silverthorne J, Tobin EM (1984) Demonstration of transcriptional regulation of specific genes by phytochrome action. Proc Natl Acad Sci USA 81: 1112–1116

    PubMed  CAS  Google Scholar 

  • Simoens C, Alliotte Th, Mendel R, Müller A, Schiemann J, van Lijsebettens M, Schell J, van Montagu M, Inzé D (1986) A binary vector for transferring genomic libraries to plants. Nucl Acids Res 14: 8073–8090

    PubMed  CAS  Google Scholar 

  • Simpson RB, O’Hara PJ, Kwok W, Montoya AL, Lichtenstein C, Gordon MP, Nester EW (1982) DNA from the A6S/2 crown gall tumor contains scrambled Ti-plasmid sequences near its junctions with the plant DNA. Cell 29: 1005–1014

    PubMed  CAS  Google Scholar 

  • Simpson J, Timko MP, Cashmore AR, Schell J, van Montagu M, Herrera-Estrella L (1985) Light-inducible and tissue-specific expression of a chimaeric gene under control of the 5’-flanking sequence of a pea chlorophyl a/b-binding protein gene. EMBO J 4: 2723

    PubMed  CAS  Google Scholar 

  • Simpson J, van Montagu M; Herrera-Estrella L (1986) Photosynthesis associated gene families: Differences in response to tissue-specific and environmental factors. Science 233: 36–38

    Google Scholar 

  • Stachel SE, Timmerman B, Zambryski P (1987) Activation of Agrobacterium tumefaciens Vir gene expression generates multiple single-stranded T-strand molecules from the pTi A6 T-region: requirement for 5’ vir D gene products. EMBO J 4: 857–863

    Google Scholar 

  • Taylor BH, Amasino RM, White FF, Nester EW, Gordon MP (1985) T-DNA analysis of plants regenerated from hairy root tumours. Mol Gen Genet 201: 554–557

    CAS  Google Scholar 

  • Teeri T, Herrera-Estrella L, Depicker A, van Montagu M, Palva ET (1986) Identification of plant pro-moters in situ by T-DNA mediated transcriptional fusions to the npt-II gene. EMBO J 5: 1755–1760

    PubMed  CAS  Google Scholar 

  • Tempé J, Petit A (1982) Opine utilization by Agrobacterium. In: Kahl G, Schell J (eds) Molecular biol-ogy of plant tumours. Academic Press, New York, pp 451–459

    Google Scholar 

  • Tepfer D (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 37: 959–967

    PubMed  CAS  Google Scholar 

  • Thomashow MF, Nutter R, Montoya AL, Gordon MP, Nester EW (1980) Integration and organiza-tion of Ti-plasmid sequences in crown gall tumours. Cell 19: 729–739

    PubMed  CAS  Google Scholar 

  • Thomashow L, Reeves S, Thomashow MF (1984) Crown gall oncogenesis: evidence that a T-DNA gene from Agrobacterium Ti plasmid pTiAG encodes an enzyme that catalyses synthesis of indoleacetic acid. Proc Natl Acad Sci USA, p 50–71

    Google Scholar 

  • Timko MP, Kausch AP, Castresana C, Fassler J, Herrera-Estrella L, van den Broeck G, van Montagu M, Schell J, Cashmore AR (1985) Light regulation of plant gene expression by an upstream enhancer-like element. Nature (Lond) 318: 579–582

    CAS  Google Scholar 

  • Toriyama K, Arimoto Y, Uchimaya H, Hinata K (1988) Transgenic rice plants after direct gene transfer into protoplasts. Biotechnology 6: 1072–1074

    CAS  Google Scholar 

  • Umbeck P, Johnson G, Barton K, Swain W (1988) Genetically transformed cotton (Gossypium hirsutum). Biotechnology 5: 263–266

    Google Scholar 

  • Ursic D, Slightom JL, Kemp JD (1983) Agrobacterium tumefaciens T-DNA integrates into multiple sites of the sunflower crown gall genome. Mol Gen Genet 190: 494–503

    CAS  Google Scholar 

  • van den Elzen P, Lee KY, Townsend J, Bedbrook JR (1985 a) Simple binary vectors for DNA transfer to plant cells. Plant Mol Biol 5: 149–154

    Google Scholar 

  • van den Elzen PJM, Townsend J, Lee KY, Bedbrook JR (1985b) A chimaeric hygromycin resistance gene as a selectable marker in plant cells. Plant Mol Biol 5: 299–302

    Google Scholar 

  • Van Haute E, Joos H, Maes M, Warren G, van Montagu M, Schell J (1983) Intergeneric transfer and exchange recombination of restriction fragments cloned in pBR322: a novel strategy for the reversed genetics of Ti plasmids of Agrobacterium tumefaciens. EMBO J 2: 411–418

    PubMed  Google Scholar 

  • van Larebeke N, Engler G, Holsters M, van den Elsacker S, Zaenen I, Schilperoort RA, Schell J (1974) Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability. Nature (Lond) 252: 169–170

    Google Scholar 

  • Waldron C, Murphy EB, Roberts JL, Gustafson GD, Armour SL, Malcom SK (1985) Resistance to hygromycin B: a new marker for plant transformation studies. Plant Mol Biol 5: 103–108

    CAS  Google Scholar 

  • Wang K, Herrera-Estrella L, van Montagu M, Zambryski P (1984) Right 25-bp terminus sequences of the nopaline T-DNA is essential for and determines direction of DNA transfer from Agrobacterium to the plant genome. Cell 38: 455–462

    PubMed  CAS  Google Scholar 

  • Watson B, Currier TC, Gordon MP, Chilton M-D, Nester EW (1975) Plasmid required for virulence of Agrobacterium tumefaciens. J Bacteriol 123: 255–264

    PubMed  CAS  Google Scholar 

  • White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW (1985) Molecular and genetic analysis of the transferred DNA regions of the hairy root-inducing plasmid of Agrobacterium rhizogenes. J Bact Biol 164 (1): 33–44

    CAS  Google Scholar 

  • Willmitzer L, De Beuckeleer M, Lemmers M, van Montagu M, Schell J (1980) DNA from Ti-plasmid is present in the nucleus and absent from plastids of plant crown-gall cells. Nature (Lond) 287: 359–361

    CAS  Google Scholar 

  • Wullems GJ, Molendijk L, Ooms G, Schilperoort RA (1981) Differential expression of crown gall tumor markers in transformants obtained after in vitro Agrobacterium tumefaciens-induced transformation of cell wall regenerating protoplasts derived from Nicotiana tabacum. Proc Natl Acad Sci USA 78: 4344–4348

    PubMed  CAS  Google Scholar 

  • Yadav NS, Vanderleyden J, Bennett DR, Barnes WM, Chilton M-D (1982) Short direct repeats flank the T-DNA on a nopaline Ti plasmid. Proc Natl Acad Sci USA 79: 6322–6325

    PubMed  CAS  Google Scholar 

  • Yamada Y, Yang Z-Q, Tang D T (1986) Plant regeneration from protoplast derived callus of rice (Oryza sativa L.). Plant Cell Rep 5: 85–88

    Google Scholar 

  • Zaenen I, van Lerebeke N, Teuchy H, van Montagu M, Schell J (1974) Supercoiled circular DNA in crown gall-inducing Agrobacterium strains. J Mol Biol 86: 109–127

    PubMed  CAS  Google Scholar 

  • Zambryski P, Holsters M, Kriger K, Depicker A, Schell J, van Montagu M, Doodman HM (1980) Tu-mor DNA structure in plant cells transformed by A. tumefaciens. Science 209: 1385–1391

    PubMed  CAS  Google Scholar 

  • Zambryski P, Depicker A, Kriger K, Goodman H (1982) Tumor induction by Agrobacterium tumefa-ciens: analysis of the boundaries of T-DNA, J Mol Appl Genet 1: 361–370

    PubMed  CAS  Google Scholar 

  • Zambryski P, Joos H, Genetello C, Leemans J, van Montagu M, Schell J (1983) Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J 2: 2143–2150

    PubMed  CAS  Google Scholar 

  • Zambryski P, Herrera-Estrella L, De Block M, van Montagu M, Schell J (1984) The use of the Ti plasmid of Agrobacterium to study the transfer and expression of foreign DNA in plant cells: new vectors and methods. In: Setlow J, Hollaender A (eds) Genetic engineering, principles and methods (Vol. 6 ). Plenum, New York, pp 253–278

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Simpson, J., Herrera-Estrella, L. (1989). DNA Recombinants and Transformation of Agricultural Crops. In: Bajaj, Y.P.S. (eds) Plant Protoplasts and Genetic Engineering II. Biotechnology in Agriculture and Forestry, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74454-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74454-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74456-3

  • Online ISBN: 978-3-642-74454-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics