Skip to main content

Self-Organizing Neural Network Architectures for Real-Time Adaptive Pattern Recognition

  • Conference paper
Neural and Synergetic Computers

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 42))

Abstract

Many of the most important properties of biological intelligence arise through a process of self-organization whereby a biological system actively interacts with a complex environment in real-time. The environment is often noisy and nonstationary, and intelligent capabilities are learned autonomously and without benefit of an external teacher. For example, children learn to visually recognize and manipulate many complex objects without being provided with explicit rules for how to do so.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.A. Carpenter, S. Grossberg: Computer Vision, Graphics, and Image Processing, 37, 1987, p. 54.

    Article  MATH  Google Scholar 

  2. G.A. Carpenter, S. Grossberg: Applied Optics, 26, 1987, p. 4919.

    Article  ADS  Google Scholar 

  3. S. Grossberg (Ed.): The Adaptive Brain, Volumes I and II. Amsterdam: Elsevier/North-Holland, 1987.

    Google Scholar 

  4. S. Grossberg (Ed.): Neural Networks and Natural Intelligence. Cambridge, MA: MIT Press, 1988.

    Google Scholar 

  5. C. von der Malsburg: Kybernetik, 14, 1973, p. 85.

    Article  Google Scholar 

  6. S. Grossberg: Biological Cybernetics, 23, 1976, p. 121.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Amari, A. Takeuchi: Biological Cybernetics, 29, 1978, p. 127.

    Article  MathSciNet  MATH  Google Scholar 

  8. E.L. Bienenstock, L.N. Cooper, P.W. Munro: Journal of Neuroscience, 2, 1982, p. 32.

    Google Scholar 

  9. T. Kohonen: Self-Organization and Associative Memory. New York: Springer-Verlag, 1984.

    MATH  Google Scholar 

  10. D.H. Ackley, G.E. Hinton, T. J. Sejnowski: Cognitive Science, 9, 1985, p. 147.

    Article  Google Scholar 

  11. D.E. Rumelhart, G.E. Hinton, R.J. Williams: In D.E. Rumelhart and J.L. McClelland (Eds.), Parallel Distributed Processing. Cambridge, MA: MIT Press, 1986.

    Google Scholar 

  12. A.L. Hodgkin, A.F. Huxley: Journal of Physiology, 117, 1952, p. 500.

    Google Scholar 

  13. A.B. Gschwendtner, R.C. Harney, R.J. Hull: In D.K. Killinger and A. Mooradian (Eds.), Optical and Laser Remote Sensing. New York: Springer-Verlag, 1983.

    Google Scholar 

  14. D. Casasent, D. Psaltis: Applied Optics, 15, 1976, p. 1793.

    ADS  Google Scholar 

  15. E.L. Schwartz: Vision Research, 20, 1980, p. 645.

    Article  Google Scholar 

  16. G.A. Carpenter, S. Grossberg: Computer, 21, 1988, p. 77.

    Article  Google Scholar 

  17. M. Cohen, S. Grossberg, D. Stork: In M. Caudill and C. Butler ( Eds. ), Proceedings of the IEEE International Conference on Neural Networks, IV, 1987, 443–454.

    Google Scholar 

  18. S. Grossberg: Biological Cybernetics, 23, 1976, p. 187.

    Article  MathSciNet  MATH  Google Scholar 

  19. J.D. Pettigrew, T. Kasamatsu: Science, 194, 1976, p. 206.

    Article  ADS  Google Scholar 

  20. J.D. Pettigrew, T. Kasamatsu: Nature, 271, 1978, p. 761.

    Article  ADS  Google Scholar 

  21. W. Singer: Human Neurobiology, 1, 1982, p. 41.

    Google Scholar 

  22. S. Grossberg: In R. Rosen and F. Snell (Eds.), Progress in theoretical biology, Vol. 5. New York: Academic Press, 1978, p. 233.

    Google Scholar 

  23. A. Samuel, J.P.H. van Santen, J.C. Johnston: Journal of Experimental Psychology: Human Perception and Performance, 8, 1982, p. 91.

    Article  Google Scholar 

  24. A. Samuel, J.P.H. van Santen, J.C. Johnston: Journal of Experimental Psychology: Human Perception and Performance, 9, 1983, p. 321.

    Article  Google Scholar 

  25. S. Grossberg: Psychological Review, 1, 1980, p. 1.

    Article  Google Scholar 

  26. E. Halgren, N.K. Squires, C.L. Wilson, J.W. Rohrbaugh, T.L. Babb, P.H. Crandall: Science, 210, p. 803.

    Google Scholar 

  27. J.-P. Banquet, J. Baribeau-Braun, N. Leseure: In R. Karrer, J. Cohen, and P. Tueting (Eds.), Brain and information: Event related potentials. New York: New York Academy of Sciences, 1984.

    Google Scholar 

  28. J.-P. Banquet, S. Grossberg: Applied Optics, 26, 1987, p. 4931.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carpenter, G.A., Grossberg, S. (1988). Self-Organizing Neural Network Architectures for Real-Time Adaptive Pattern Recognition. In: Haken, H. (eds) Neural and Synergetic Computers. Springer Series in Synergetics, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74119-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74119-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74121-0

  • Online ISBN: 978-3-642-74119-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics