Skip to main content

Distribution of Opioid Peptides Functionally Related to the Cardiovascular System

  • Conference paper
Opioid Peptides and Blood Pressure Control

Abstract

Endogenous opioid peptides exert multiple modulatory effects in the regulation of cardiovascular function at both central [11] and peripheral sites [49]. A crucial basis for the understanding of the complex mechanisms involved in this regulatory system is the detailed knowledge of the morphological distribution of opioid peptides. The morphological methods appropriate for this purpose require antisera raised against the different opioid peptides and the use of immunohistochemistry. However, difficulties arise from the structural similarities of opioid peptides. To our present knowledge, opioid peptides are cleavage products of three large precursor molecules:

  1. a)

    proopiomelanocortin (POMC) processing results in the production of endorphins,

  2. b)

    prodynorphin is the precursor of neoendorphins and dynorphins, and

  3. c)

    proenkephalin contains one copy of leu-enkephalin (LE) and several opioids sharing the met-enkephalin (ME) sequence at their N-terminus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ariano MA, Kenny SL (1985) Peptide coincidence in rat superior cervical ganglion. Brain Res 340: 181–185

    Article  PubMed  CAS  Google Scholar 

  2. Ariano MA, Tress EL (1983) Co-localization of cyclic GMP in superior cervical ganglion with peptide neurotransmitter. Brain Res 289: 362–365

    Article  PubMed  CAS  Google Scholar 

  3. Bloch B, Popovici T, Chouham S, Kowalski C (1986) Detection of the mRNA coding for enkephalin precursor in the rat brain and adrenal using an “in situ” hybridization procedure. Neurosci Lett 64: 29–34

    Article  PubMed  CAS  Google Scholar 

  4. Colombo M, Kummer W, Heym C (1987) Immunohistochemistry of opioid peptides in guinea pig paraganglia. Exp Brain Res peptides Series 16: 67–72

    Google Scholar 

  5. Comb M, Seeburg PH, Adelman J, Eiden L, Herbert F (1982) Primary structure of the human met- and leu-enkephalin precursor and its mRNA. Nature 295: 663–666

    Article  PubMed  CAS  Google Scholar 

  6. Dalsgaard CJ, Hökfelt T, Elfvin LG, Terenius L (1982) Enkephalin-containing sympathetic preganglionic neurons projecting to the inferior mesenteric ganglion: evidence from combined retrograde tracing and immunohistochemistry. Neuroscience 7: 2039–2050

    Article  PubMed  CAS  Google Scholar 

  7. Dalsgaard CJ, Vincent SR, Hökfelt T, Christensson I, Terenius L (1983) Separate origins for the dynorphin and enkephalin immunoreactive fibres in the inferior mesenteric ganglion of the guinea pig. J Comp Neurol 221: 482–489

    Article  PubMed  CAS  Google Scholar 

  8. Dalsgaard CJ, Hökfelt T, Schultzberg M, Lundberg JM, Terenius L. Dockray DJ, Goldstein M (1983) Origin of peptide-containing fibres in the inferior mesenteric ganglion of the guinea pig: immunohistochemical studies with antisera to substance P, enkephalin, vasoactive intestinal polypeptide, cholecystokinin and bombesin. Neuroscience 9: 191–211

    Article  PubMed  CAS  Google Scholar 

  9. DiGiulio AM, Yang HY, Lutold B, Fratta W, Hong J, Costa E (1978) Characterization of enkephalin-like material extracted from sympathetic ganglia. Neuropharmacology 17: 989–992

    Article  CAS  Google Scholar 

  10. Evans CJ, Erdelyi E, Weber E, Barchas JD (1983) Identification of pro-opiomelanocortin- derived peptides in the human adrenal medulla. Science 221: 957–960

    Article  PubMed  CAS  Google Scholar 

  11. Feuerstein G (1985) The opioid system and central cardiovascular control: analysis of controversies. Peptides 6 (2): 51–56

    Article  PubMed  CAS  Google Scholar 

  12. Forssmann WG, Reinecke M, Weihe E (1982) Cardiac innervation. In: Bloom SR, Polak JM, Lindenlaub E (eds.) Systemic role of regulatory peptides. Schattauer, Stuttgart, pp 329–349

    Google Scholar 

  13. Hancock MB (1982) Leu-enkephalin, substance P and somatostatin immunohistochemistry combined with the retrograde transport of horseradish peroxidase in sympathetic neurons. J Auton Nerv Syst 6: 263–273

    Article  PubMed  CAS  Google Scholar 

  14. Helén P, Panula P, Yang HY T, Hervonen A, Rapoport SI (1984) Location of substance P-, bombesin-gastrin-releasing peptide (Met 5), enkephalin- and (Met 5) enkephalin-arg 6-phe7-like immunoreactivities in adult human sympathetic ganglia. Neuroscience 12: 907–916

    Article  PubMed  Google Scholar 

  15. Helén P, Panula P, Yang HY T, Rapoport SI (1984) Bombesin/gastrin-releasing peptide (GRP)- and met5-enkephalin-arg6-gly7-leu8-like immunoreactivities in small intensely fluorescent ( SIF) cells and nerve fibres of rat sympathetic ganglia. J Histochem Cytochem 32: 1131–1138

    Google Scholar 

  16. Heym C (1985) Neuropeptides in paraganglia of various mammals. In: Duncker HR, Fleischer G (eds) Functional morphology in vertebrates. Fortschr Zoologie 30: 563–569

    Google Scholar 

  17. Heym C, Reinecke M, Weihe E, Forssmann WG (1984) Dopamines-hydroxylase-, neurotensin-, substance-P, vasoactive intestinal polypeptide- and enkephalin-immunohistochemistry of paravertebral and prevertebral ganglia in the cat. Cell Tissue Res 235: 411–418

    Article  PubMed  CAS  Google Scholar 

  18. Holets V, Elde R (1982) The differential distribution and relationship of serotoninergic and peptidergic fibers to sympathoadrenal neurons in the intermediolateral cell column of the rat: a combined retrograde axonal transport and immunofluorescence study. Neuroscience 7: 1155–1174

    Article  PubMed  CAS  Google Scholar 

  19. Hughes J, Kosterlitz HW, Smith TW (1977) The distribution of methionine-enkephalin and leucine-enkephalin in the brain and peripheral tissues. Br J Pharmacol 61: 639–647

    PubMed  CAS  Google Scholar 

  20. Julé Y, Clerk N, Niel JP, Condamin M (1986) (Met)- and (leu)enkephalin like immunoreactive cell bodies and nerve fibres in the coeliac ganglion of the cat. Neuroscience 18: 487–498

    Google Scholar 

  21. Kakidani H, Furutani Y, Takahashi H, Noda M, Morimoto Y, Hirose T, Asai M, Inayama S, Nakanishi S, Numa S (1982) Cloning and sequence analysis of cDNA for porcine α-neoendorphin/ dynorphin precursor. Nature 298: 245–249

    Article  PubMed  CAS  Google Scholar 

  22. Khachaturian H, Lewis ME (1985) (β-endorphin, α-MSH, ACTH and related peptides. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroantomy, Vol 4: GAB A and neuropeptides in the CNS, Part 1. Elsevier, Amsterdam, pp 216–272

    Google Scholar 

  23. Kondo H (1985) Immunohistochemical analysis of the localization of neuropeptides in the adrenal gland. Arch Histol Jpn 48: 453–481

    Article  PubMed  CAS  Google Scholar 

  24. Kondo H, Kuramoto H, Iwanaga T (1984) Immunohistochemical study of met-enkephalin-arggly-leu-like immunoreactive nerve fibres in the rat adrenal medulla. Brain Res 310: 371–375

    Article  PubMed  CAS  Google Scholar 

  25. Kummer W, Heym C (1986) Correlation of neuronal size and peptide immunoreactivity in the guinea-pig trigeminal ganglion. Cell Tissue Res 245: 657–665

    Article  PubMed  CAS  Google Scholar 

  26. Kummer W, Heym C (1986) Dynorphin A1-13- and dynorphin A1-17-immunoreactivity at the paranodal portion of Schwann cells, (submitted)

    Google Scholar 

  27. Kummer W, Heym C, Colombo M, Lang R (1986) Immunohistochemical evidence for extrinsic and intrinsic opioid systems in the guinea pig superior cervical ganglion. Anat Embryol (Berl) 174: 401–405

    Article  CAS  Google Scholar 

  28. Lang RE, Hermann K, Dietz R, Gaida W, Ganten D, Kraft K, Unger T (1983) Evidence for the presence of enkephalins in the heart. Life Sci 32: 399–406

    Article  PubMed  CAS  Google Scholar 

  29. Lemaire S, Day R, Dumont M, Chuinard L, Calvert R (1984) Dynorphin and enkephalins in adrenal paraneurones. Opiates in the adrenal medulla. Can J Physiol Pharmacol 62: 484–492

    Google Scholar 

  30. Morris JL, Gibbins IL, Furness JB, Costa M, Murphy R (1985) Co-localization of neuropeptide Y, vasoactive intestinal polypeptide and dynorphin in non-noradrenergic axons of the guinea pig uterine artery. Neurosci Lett 62: 31–37

    Article  PubMed  CAS  Google Scholar 

  31. Nakanishi S, Inone A, Kita T, Nakamura M, Chang ACY, Cohen SN, Numa S (1979) Nucleotide sequence of cloned cDNA for bovine corticotropin-lipotropin precursor. Nature 278: 423–427

    Article  PubMed  CAS  Google Scholar 

  32. Noda M, Furutani Y, Takahashi H, Toyosata M, Hirose T, Inayama S, Nakanishi S, Numa S (1982) Cloning and sequence analysis of cDNA for bovine adrenal preproenkephalin. Nature 295: 202–206

    Article  PubMed  CAS  Google Scholar 

  33. Petrusz P, Merchenthaler I, Maderdrut JL (1985) Distribution of enkephalin-containing neurons in the central nervous system. In: Bjorklund A, Hokfelt T (eds) Handbook of chemical neuroantomy, Vol 4: GAB A and neuropeptides in the CNS, Part I. Elsevier, Amsterdam, pp 273–334

    Google Scholar 

  34. Reinecke M, Forssmann WG (1984) Regulatory peptides (SP, NT, VIP, PHI, ENK) of autonomic nerves in the guinea pig heart. Clin Exp Theor Pract A6 (10&11): 1867–1871

    Article  CAS  Google Scholar 

  35. Reinecke M, Forssmann WG (1987) Peptidergic innervation of the coronary vessels. In: Burnstock G, Griffith S (eds.) Nonadrenergic innervation of blood vessels. CRC Press, Boca Raton

    Google Scholar 

  36. Schultzberg M, Lundberg JM, Hökfelt T, Terenius L, Brandt J, Eide RP, Goldstein M (1978) Enkephalin-like immunoreactivity in gland cells and nerve terminals of the adrenal medulla. Neuroscience 3: 1169–1186

    Article  PubMed  CAS  Google Scholar 

  37. Schultzberg M, Hökfelt T, Terenius L, Elfvin LG, Lundberg JM, Brandt J, Eide RP, Goldstein M (1979) Enkephalin immunoreactive nerve fibres and cell bodies in sympathetic ganglia of the guinea-pig and rat. Neuroscience 4: 249–270

    Article  PubMed  CAS  Google Scholar 

  38. Spampinato S, Goldstein A (1983) Immunoreactive dynorphin in rat tissues and plasma. Neuropeptides 3: 193–212

    Article  PubMed  CAS  Google Scholar 

  39. Sundler F, Ekblad E, Böttcher G, Alumets J, Hakanson R (1985) Coexistence of peptides in the neuroendocrine system. In: Hakanson R, Thorell J (eds): Biogenetics of neurohormonal peptides. Academic, London, pp 213–244

    Google Scholar 

  40. Tang J, Yan HYT, Costa E (1982) Distribution of met-enkephalin-arg6-phe7- in various tissues of rats and guinea pigs. Neuropharmacology 21: 595–600

    Article  PubMed  CAS  Google Scholar 

  41. Unsicker K, Habura-Flüh O, Zwarg U (1978) Different types of small granule-containing cells and neurons in the guinea pig adrenal medulla. Cell Tissue Res 189: 109–130

    Article  PubMed  CAS  Google Scholar 

  42. Vincent SR, Dalsgaard CJ, Schultzberg M, Hökfelt T, Christensson I, Terenius L (1984) Dynorphin-immunoreactive neurons in the autonomic nervous system. Neuroscience 11: 973–987

    Article  PubMed  CAS  Google Scholar 

  43. Viveros OH, Wilson SP (1983) The adrenal chromaffin cells as a model to study the co-secretion of enkephalins and catecholamines. J Auton Nerv Syst 7: 41–58

    Article  PubMed  CAS  Google Scholar 

  44. Watson SJ, Akil H, Ghazarossian VE, Goldstein A (1981) Dynorphin immunocytochemical localization in brain and peripheral nervous system: preliminary studies. Proc Natl Acad Sci USA 78: 1260–1263

    Article  PubMed  CAS  Google Scholar 

  45. Webber RH, Heym C (1988) Immunohistochemistry of biogenic polypeptides in nerve cells and fibres of the guinea pig inferior mesenteric ganglion after perturbations. Histochemistry (in press)

    Google Scholar 

  46. Weihe E, McKnight AT, Corbett AD, Hartschuh W, Reinecke M, Kosterlitz HW (1983) Characterization of opioid peptides in guinea-pig heart and skin. Life Sci 33 (Suppl 1): 711–714

    Article  PubMed  CAS  Google Scholar 

  47. Weihe E, Hartschuh W, Weber E (1985) Prodynorphin opioid peptides in small somatosensory primary afferents of guinea pig. Neurosci Lett 58: 347–352

    Article  PubMed  CAS  Google Scholar 

  48. Weihe E, McKnight AT, Corbett AD, Kosterlitz HW (1985) Proenkephalin- and prodynorphin- derived opioid peptides in guinea pig heart. Neuropeptides 5: 453–456

    Article  PubMed  CAS  Google Scholar 

  49. Xiang JZ, Archelos J, Lang RE (1984) Enkephalins in the heart. Clin Exp Theor Pract A6 (10&11): 1883–1888

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kummer, W., Reinecke, M., Heym, C., Forssmann, W.G. (1988). Distribution of Opioid Peptides Functionally Related to the Cardiovascular System. In: Stumpe, K.O., Kraft, K., Faden, A.I. (eds) Opioid Peptides and Blood Pressure Control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73429-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73429-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18935-0

  • Online ISBN: 978-3-642-73429-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics