Skip to main content

Abstract

In recent years there has been a virtual explosion in our understanding of the mechanisms which regulate vertebrate cell proliferation. This applies both to normal cells, in which growth is tightly controlled, as well as to cancer cells, which divide in an uncontrolled fashion. Molecular and biochemical studies have led to the identification of a number of genes whose products are involved in regulating normal cell growth. In addition, many genes which are capable of inducing a transformed phenotype have been identified. Perhaps most important in fueling the remarkable progress of the past few years was the demonstration of something which was believed by many, but for a long time remained speculative: that these two groups of genes are in fact largely one and the same. This realization has been tremendously catalytic for both areas of research, and is the central concept around which this book is organized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bishop JM (1985) Viral oncogenes. Cell 42:23–38

    CAS  Google Scholar 

  • Cochran BH, Zullo J, Verma IM, Stiles CD (1984) Expression of the c-fos oncogene and a newly discovered c-fox is stimulated by platelet-derived growth factor. Science 226:1080–1082

    Article  CAS  PubMed  Google Scholar 

  • Cohen S (1962) Isolation of a submaxillary gland protein accelerating incisor eruption and eyelid opening in the newborn animal. J Biol Chem 237:1555–1562

    CAS  PubMed  Google Scholar 

  • Collett MS, Erikson RL (1978) Protein kinase activity associated with the avian sarcoma virus src gene products. Proc Natl Acad Sci USA 75:2021–2024

    Article  CAS  PubMed  Google Scholar 

  • DeLarco JE, Todaro GJ (1978) Growth factors from murine sarcoma virus-transformed cells. Proc Natl Acad Sci USA 75:4001–4005

    Article  CAS  Google Scholar 

  • Doolittle RF, Hunkapiller MW, Hood LE, DeVare SG, Robbins KC, Aaronson SA, Antoniades HN (1983) Simian sarcoma virus one gene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor. Science 221:275–276

    Article  CAS  PubMed  Google Scholar 

  • Downward J, Yarden Y, Mayes E, Scrace G, Totty N, Stockwell P, Ullrich A, Schlessinger J, Waterfield MD (1984) Close similarity of epidermal growth factor receptor and v-erbB oncogene protein sequences. Nature 307:521–527

    Article  CAS  PubMed  Google Scholar 

  • Greenberg ME, Ziff EB (1984) Stimulation of 3T3 cells induces transcription of the c-fos protooncogene. Nature 311:433–438

    Article  CAS  PubMed  Google Scholar 

  • Hunter T, Cooper JA (1985) Protein-tyrosine kinases. Annu Rev Biochem 54:897–930

    Article  CAS  PubMed  Google Scholar 

  • Hunter T, Sefton BM (1980) Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci USA 77:1311–1315

    Article  CAS  PubMed  Google Scholar 

  • Kelly K, Cochran BH, Stiles CD, Leder P (1983) Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell 35:603–610

    Article  CAS  PubMed  Google Scholar 

  • Krontiris TG, Cooper GM (1981) Transforming activity of human tumor DNAs. Proc Natl Acad Sci USA 78:1181–1184

    Article  CAS  PubMed  Google Scholar 

  • Kruijer W, Cooper JW, Hunter T, Verma IM (1984) Platelet-derived growth factor induces rapid but transient expression of the c-fos gene and protein. Nature 312:711–716

    Article  CAS  PubMed  Google Scholar 

  • Levinson AD, Oppermann H, Levintow L, Varmus HE, Bishop JM (1978) Evidence that the transforming gene of avian sarcoma virus encodes a protein kinase associated with a phosphoprotein. Cell 15:561–572

    Article  CAS  PubMed  Google Scholar 

  • Müller R, Bravo R, Burckhardt J, Curran T (1984) Induction of c-fos gene on protein by growth factor precedes activation of c-myc. Nature 312:716–720

    Article  PubMed  Google Scholar 

  • Murray MJ, Shilo B-Z, Shih C, Cowing D, Hsu HW, Weinberg RA (1981) Three different human tumor cell lines contain different oncogenes. Cell 25:355–361

    Article  CAS  PubMed  Google Scholar 

  • Reddy EP, Reynolds R, Santos E, Barbacid M (1982) A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 300:149–152

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ, Rettenmier CW, Sacca R, Roussel MF, Look AT, Stanley ER (1985) The c-fms protooncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1. Cell 41:665–676

    Article  CAS  PubMed  Google Scholar 

  • Sporn MB, Todaro GJ (1980) Autocrine secretion and malignant transformation of cells. N Engl J Med 303:878–880

    Article  CAS  PubMed  Google Scholar 

  • Stéhelin D, Varmus HE, Bishop JM, Vogt PK (1976) DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260:170–173

    Article  PubMed  Google Scholar 

  • Tabin CJ, Bradley SM, Bargmann CI, Weinberg RA, Papageorge AG, Scolnick EM, Dhar R, Lowy DR, Chang EH (1982) Mechanism of activation of a human oncogene. Nature 300:143–149

    Article  CAS  PubMed  Google Scholar 

  • Taparowsky E, Suard Y, Fasano O, Shimizu K, Goldfarb M, Wigler M (1982) Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change. Nature 300:762–765

    Article  CAS  PubMed  Google Scholar 

  • Ushiro H, Cohen S (1980) Identification of phosphotyrosine as a product of epidermal growth factor-activated protein kinase in A431 cell membranes. J Biol Chem 255:8363–8365

    CAS  PubMed  Google Scholar 

  • Waterfield MD, Scarce GJ, Whittle N, Strooband P, Johnson A, Wasteson A, Westermark B, Heldin C-H, Huang JS, Deuel TF (1983) Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus. Nature 304:35–39

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kahn, P., Graf, T. (1986). Introduction. In: Kahn, P., Graf, T. (eds) Oncogenes and Growth Control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73325-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73325-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18760-8

  • Online ISBN: 978-3-642-73325-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics