Skip to main content

Ordinal Types in Ramsey Theory and Well-Partial-Ordering Theory

  • Chapter
Mathematics of Ramsey Theory

Part of the book series: Algorithms and Combinatorics ((AC,volume 5))

Abstract

There is a gap between the infinite Ramsey’s theorem ω → (ω) n k and its finite version

$$R\left( {n;{l_1}...,{l_k}} \right) \to \left( {{l_1}...,{l_k}} \right)_k^n.$$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alon, N., Füredi, Z., Katchalski, M. (1985): Separating pairs of points by standard boxes. Europ. J. Combinatorics 6, 205–210

    MATH  Google Scholar 

  • Balcar, B., Stëpânek, P. (1986): Set theory. Academia Praha, Prague (In Czech)

    Google Scholar 

  • Chvâtal, V. (1977): Tree-complete graph Ramsey numbers. J. Graph Theory 1, 93

    Article  MathSciNet  Google Scholar 

  • Dilworth, R.P. (1950): A decomposition theorem for partially ordered sets. Ann. Math., II. Ser. 51, 161–166

    Article  MathSciNet  MATH  Google Scholar 

  • Erdös, P., Szekeres, G. (1935): A combinatorial problem in geometry. Compos. Math. 2, 463–470

    MATH  Google Scholar 

  • Erdös, P., Rado, R. (1950): A combinatorial theorem. J. Lond. Math. Soc. 25, 249–255

    Article  MATH  Google Scholar 

  • Erdös, P., Graham, R.L. (1980): Old and new problems and results in combinatorial number theory. L’Enseignement Mathématique, Université de Genève, Geneva (Monogr. Enseign. Math., Vol. 28)

    MATH  Google Scholar 

  • Graham, R.L., Rothschild, B., Spencer, J. (1980): Ramsey theory. J. Wiley & Sons, New York, NY

    MATH  Google Scholar 

  • Higman, G. (1952): Ordering by divisibility in abstract algebras. Proc. Lond. Math. Soc., III. Ser. 2, 326–336

    Article  MathSciNet  MATH  Google Scholar 

  • de Jongh, D.H.J., Parikh, R. (1977): Well-partial orderings and hierarchies. Proc. K. Ned. Akad. Wet., Ser. A 80 (Indagationes Math. 39), 195–207

    MATH  Google Scholar 

  • Kříž, I.: On perfect lattices. (To appear)

    Google Scholar 

  • Kruskal, J. (1960): Well-quasi-ordering, the tree-theorem, and Vazsonyi’s conjecture. Trans. Am. Math. Soc. 95, 210–225

    MathSciNet  MATH  Google Scholar 

  • Kruskal, J. (1972): The theory of well-quasi-ordering: a frequently discovered concept. J. Comb. Theory, Ser. A 13, 297–305

    Article  MathSciNet  MATH  Google Scholar 

  • Milner, E.C., Sauer, N.: On chains and antichains in well-founded partially ordered sets. Preprint

    Google Scholar 

  • Nash-Williams, C.St.J.A. (1963): On well-quasi-ordering finite trees. Proc. Camb. Philos. Soc. 59, 833–835

    Article  MathSciNet  MATH  Google Scholar 

  • Nash-Williams, C.St.J.A. (1965): On well-quasi-ordering transfinite sequences. Proc. Camb. Philos. Soc. 61, 33–39

    Article  MathSciNet  MATH  Google Scholar 

  • Nešetřil, J., Rödl, V. (1979): Partition theory and its application. In: Bollobâs, B. (ed.): Surveys in combinatorics. Cambridge University Press, Cambridge, pp. 96–156 (Lond. Math. Soc. Lect. Note Ser., Vol. 38)

    Google Scholar 

  • Nešetřil, J. (1987): Ramsey theory. In: Graham, R.L., Grötschel, M., Lovâsz, L. (eds.): Handbook of combinatorics. (To appear)

    Google Scholar 

  • Ore, O. (1962): Theory of graphs. American Mathematical Society, Providence, RI

    MATH  Google Scholar 

  • Paris, J.B., Harrington, L.A. (1977): A mathematical incompleteness in Peano arithmetic. In: Barwise, J. (ed.): Handbook of mathematical logic. North Holland, Amsterdam, pp. 1133–1142 (Stud. Logic Found. Math., Vol. 90)

    Chapter  Google Scholar 

  • Pouzet, M. (1979): Sur les chaînes d’un ensemble partiellement bien ordonné. Publ. Dép. Math., Nouv. Ser., Univ. Claude Bernard, Lyon 16, 21–26

    Google Scholar 

  • Pudlák, P., Rödl, V. (1982): Partition theorems for systems of finite subsets of integers. Discrete Math. 39, 67–73

    Article  MathSciNet  Google Scholar 

  • Robertson, N., Seymour, P.D.: Graph minors I-XVIII.

    Google Scholar 

  • Schmidt, D. (1978): Associative ordinal functions, well partial orderings and a problem of Skolem. Z. Math. Logik Grundlagen Math. 24, 297–302

    Article  MATH  Google Scholar 

  • Schmidt, D. (1979): Well partial orderings and their maximal order types. Inaugural Dissertation, Universität Heidelberg

    Google Scholar 

  • Schmidt, D. (1981): The relation between the height of a well-founded partial ordering and the order types of its chains and antichains. J. Comb. Theory, Ser. B 31, 183–189

    Article  MATH  Google Scholar 

  • Schütte, K., Simpson, S.G. (1985): Ein in der reinen Zahlentheorie unbeweisbarer Satz über endliche Folgen von natürlichen Zahlen. Arch. Math. Logik Grundlagenforsch. 25, 75–89

    Article  MATH  Google Scholar 

  • Simpson, S.G. (1985): Nonprovability of certain combinatorial properties of finite trees. In: Harrington, L.A., Morley, M.D., Scedrov, A., Simpson, S.G. (eds.): Harvey Friedman’s research on the foundations of mathematics. North Holland, Amsterdam, pp. 87–117 (Stud. Logic Found. Math., Vol. 117)

    Chapter  Google Scholar 

  • Wolk, E.S. (1967): Partially well ordered sets and partial ordinals. Fundam. Math. 60, 175–186

    MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kříž, I., Thomas, R. (1990). Ordinal Types in Ramsey Theory and Well-Partial-Ordering Theory. In: Nešetřil, J., Rödl, V. (eds) Mathematics of Ramsey Theory. Algorithms and Combinatorics, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72905-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72905-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72907-2

  • Online ISBN: 978-3-642-72905-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics