Skip to main content

Physics of Water and Ice: Implications for Cryofixation

  • Chapter
Cryotechniques in Biological Electron Microscopy

Abstract

Cryotechniques in biological electron microscopy have one aspect in common: the use of low temperatures to stabilize or “fix” ultrastructure as it exists under physiological conditions. Ideal fixation and specimen preparation require that the constituents of the system keep their position within a range which is smaller than the resolution of the observation technique. The molecules and ions within a biological specimen interact in very complex ways. The kind of interaction depends strongly on temperature. What type of arrangement or structure is stable at a given temperature is determined by the laws of thermodynamics which state that any system tends towards a state of minimal free energy. The rate at which a system follows this tendency is determined by kinetics. The rearrangement or movement of molecules which is necessary to adapt a system to a change in temperature is usually an activated process, meaning that the molecules involved need excess energy (activation energy) in order to be able to change their positions. This “activation energy” is released after the event has taken place. Molecules which are not at the activated energy level will not react, although the reaction would result in a gain of stability. The pool out of which the activation energy is taken is the thermal energy of the system. Thus, the probability that a molecule is activated in a given time increases with temperature. As a result, a change of temperature has a dual influence on a specimen: it determines the equilibrium or stable structure at the new temperature and also the speed or rate at which the system adjusts to the new equilibrium state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angell CA (1970) The data gap in solution chemistry. J Chem Educ 47:583–587.

    Article  CAS  Google Scholar 

  2. Angell CA (1982a) Supercooled water. In: Franks F (ed) Water, a comprehensive treatise, vol 7. Plenum, New York London, pp 1–81.

    Google Scholar 

  3. Angell CA (1982b) Les anomalies de l’eau. Recherche 133:584–593.

    Google Scholar 

  4. Angell CA (1983) Supercooled water. Annu Rev Phys Chem 34:593–630.

    Article  CAS  Google Scholar 

  5. Angell CA, Choi Y (1986) Crystallization and vitrification in aqueous systems. J Microsc (Oxford) 141:251–261.

    Article  CAS  Google Scholar 

  6. Angell CA, Tucker JC (1980) Heat capacity changes in glass-forming aqueous solutions and the glass transition in vitreous water. J Phys Chem 84:268–272.

    Article  CAS  Google Scholar 

  7. Angell CA, Shuppert J, Tucker JC (1973) Anomalous properties of supercooled water. Heat capacity, expansivity and proton magnetic resonance chemical shift from 0 to-38°. J Phys Chem 77:3092–3099.

    Article  CAS  Google Scholar 

  8. Angell CA, Clarke JHR, Woodcock LV (1981) Interaction potentials and glass formation: a survey of computer experiments. Adv Chem Phys 48:397–453.

    Article  CAS  Google Scholar 

  9. Angell CA, Oguni M, Sichina WJ (1982) Heat capacity of water at extremes of supercooling and superheating. J Phys Chem 86:998–1002.

    Article  CAS  Google Scholar 

  10. Angell CA, Busse LE, Cooper EI, Kadiyala RK, Dworkin A, Ghelfenstein M, Szwarc H, Vassal A (1985) Glasses and glassy crystals from molecular and molecular ionic systems. J Chim Phys 82:267–274.

    CAS  Google Scholar 

  11. Aurich F, Förster T (1984) Temperature measurement during rapid cooling in μl-volumina using a fluorescence label. Cryoletters 5:231–238.

    Google Scholar 

  12. Bald WB (1983) Optimizing the cooling block for the quick freeze method. J Microsc (Oxford) 131:11–33.

    Article  CAS  Google Scholar 

  13. Belfort G (1974) Structure of water on porous glass. Nature (London) 249:593–594.

    Article  CAS  Google Scholar 

  14. Berendsen HJC (1975) Specific interactions of water with biopolymers. In: Franks F (ed) Water, a comprehensive treatise, vol 5. Plenum, New York London pp 293–330.

    Google Scholar 

  15. Boutron P (1984) More accurate determination of the quantity of ice crystallized at low cooling rates in the glycerol and 1,2-propanediol aqueous solutions: Comparison with equilibrium. Cryobiology 21:183–191.

    Article  PubMed  CAS  Google Scholar 

  16. Bowman HF, Cravalko EG, Woods M (1975) Theory, measurement and application of the thermal properties of biomaterials. Annu Rev Biophys Bioeng 4:43–80.

    Article  PubMed  CAS  Google Scholar 

  17. Brüggeller P (1983) Evaluation of modified water by electron paramagnetic resonance: no evidence for long-range order of water on pore glasses. J Colloid Interface Sci 94:524–530.

    Article  Google Scholar 

  18. Brüggeller P, Mayer E (1980) Complete vitrification in pure liquid water and dilute aqueous solutions. Nature (London) 288:569–571.

    Article  Google Scholar 

  19. Brüggeller P, Mayer E (1981) EPR Investigation of the nonfreezing water/free water ratio in disperse systems. J Phys Chem 85:4135–4139.

    Article  Google Scholar 

  20. Cohen MH, Turnbull D (1959) Molecular transport in liquids and glasses. J Chem Phys 31:1164–1169.

    Article  CAS  Google Scholar 

  21. Conway BE (1981) Ionic hydration in chemistry and biophysics. Elsevier, Amsterdam.

    Google Scholar 

  22. Cooke R, Kuntz ID (1974) The properties of water in biological systems. Annu Rev Biophys Bioeng 3:95–126.

    Article  PubMed  CAS  Google Scholar 

  23. Derbyshire W (1982) The dynamics of water in heterogeneous systems with emphasis on subzero temperatures. In: Franks F (ed) Water, a comprehensive treatise, vol 7. Plenum, New York London, pp 339–430.

    Google Scholar 

  24. Dore JC (1985) Neutron diffraction studies of water structure. In: Franks F (ed) Water science reviews 1. Univ Press, Cambridge, pp 3–92.

    Google Scholar 

  25. Dubochet J, Lepault J (1984) Cryo-electron microscopy of vitrified water. J Phys C7:85–94.

    Google Scholar 

  26. Dubochet J, McDowall AW (1981) Vitrification of pure liquid water for electron microscopy. J Microsc (Oxford) 124:RP3–RP4.

    Article  Google Scholar 

  27. Dubochet J, Lepault J, Freeman R, Berriman JA, Homo JC (1982) Electron microscopy of frozen water and aqueous solutions. J Microsc (Oxford) 128:219–237.

    Article  Google Scholar 

  28. Dubochet J, Adrian M, Vogel RH (1983) Amorphous solid water obtained by vapour condensation or by liquid cooling: a comparison. Cryoletters 4:233–240.

    CAS  Google Scholar 

  29. Elder HY, Gray CC, Jardine AG, Chapman JN, Biddlecombe WH (1982) Optimum conditions for the cryoquenching of small tissue blocks in liquid coolants. J Microsc (Oxford) 126:45–61.

    Article  CAS  Google Scholar 

  30. Elliott SR (1983) Physics of amorphous materials. Longman, London New York.

    Google Scholar 

  31. Finney JL (1986) The role of water perturbations in biological processes. In: Neilson GW, Enderby JE (eds) Water and aqueous solutions. Hilger, Bristol Boston, pp 227–

    Google Scholar 

  32. Fletcher NH (1971) Structural aspects of the ice-water system. Rep Prog Phys 34:913–994.

    Article  CAS  Google Scholar 

  33. Franks F (1975) The hydrophobic interaction. In: Franks F (ed) Water, a comprehensive treatise, vol 4. Plenum, New York London, pp 1–94.

    Google Scholar 

  34. Franks F (1981) Glassy water-recent developments. Cryoletters 2:69–71.

    Google Scholar 

  35. Franks F (1985) Biophysics and biochemistry at low temperatures. Univ Press, Cambridge.

    Google Scholar 

  36. Franks F (1986) Metastable water at subzero temperatures. J Microsc (Oxford) 141:243–249.

    Article  CAS  Google Scholar 

  37. Ghormley JA (1967) Adsorption and occlusion of gases by the low-temperature forms of ice. J Chem Phys 46:1321–1325.

    Article  CAS  Google Scholar 

  38. Gillen KT, Douglass DC, Hoch JR (1972) Self-diffusion in liquid water to −31 °C. J Chem Phys 57:5117–5119.

    Article  CAS  Google Scholar 

  39. Gross GW, Mcee C, Wu C (1974a) Concentration dependent solute redistribution at the ice/water phase boundary. I. Analysis. J Chem Phys 62:3080–3084.

    Article  Google Scholar 

  40. Gross GW, Wu C, Bryant L, McKee C (1974b) Concentration dependent solute redistribution at the ice/water phase boundary. II. Experimental investigation. J Chem Phys 62:3085–3092.

    Article  Google Scholar 

  41. Hallbrucker A, Mayer E (1987) Calorimetric study of the vitrified liquid water to cubic ice phase transition. J Phys Chem 91:503–505.

    Article  CAS  Google Scholar 

  42. Hare DE, Sorensen CM (1986) Densities of supercooled H2O and D2O in 25 μm glass capillaries. J Chem Phys 84:5085–5089.

    Article  CAS  Google Scholar 

  43. Harreveld A van, Crowell J (1964) Electron microscopy after rapid freezing on a metal surface and substitution fixation. Anat Rec 149:381–385.

    Article  Google Scholar 

  44. Heide HG, Zeitler E (1985) The physical behavior of solid water at low temperatures and the embedding of electron microscopical specimens. Ultramicroscopy 16:151–160.

    Article  Google Scholar 

  45. Hertz HG (1973) Nuclear magnetic relaxation spectroscopy. In: Franks F (ed) Water, a comprehensive treatise, vol 3. Plenum, New York London, pp 301–399.

    Google Scholar 

  46. Hobbs P (1974) Ice physics. Clarendon, Oxford.

    Google Scholar 

  47. Irish DE, Jarv T (1977) Temperature dependence of Raman band parameters of aquated cations. Discuss Faraday Soc 64:95–101.

    Article  Google Scholar 

  48. Irish DE, Jarv T (1983) Vibrational spectral studies of solutions at elevated temperatures and pressures. IV. Raman spectra of aqueous zinc nitrate solutions. Appl Spectrosc 37:50–55.

    Article  CAS  Google Scholar 

  49. Israelachvili JN (1985) Measurements of hydration forces between macroscopic surfaces. Chem Scr 25:7–14.

    CAS  Google Scholar 

  50. James DW (1985) Spectroscopic studies of ion-ion-solvent interaction in solutions containing oxyanions. Progr Inorg Chem 33:353–391.

    Article  CAS  Google Scholar 

  51. Johari GP (1974) Introduction to the glassy state in the undergraduate curriculum. J Chem Educ 51:23–27.

    Article  CAS  Google Scholar 

  52. Jones GJ (1984) On estimating freezing times during tissue rapid freezing. J Microsc (Oxford) 136:349–360.

    Article  CAS  Google Scholar 

  53. Kanno H, Speedy RJ, Angell CA (1975) Supercooling of water to −92 °C under pressure. Science 189:880–881.

    Article  PubMed  CAS  Google Scholar 

  54. Katz JL, Donohue MD (1979) A kinetic approach to homogeneous nucleation theory. Adv Chem Phys 40:137–155.

    Article  CAS  Google Scholar 

  55. Kauzmann AW (1948) The nature of the glassy state and the behaviour of liquids at low temperatures. Chem Rev 43:219–256.

    Article  CAS  Google Scholar 

  56. Klinger J (1980) Influence of a phase transition of ice on the heat and mass balance of comets. Science 209:271–272.

    Article  PubMed  CAS  Google Scholar 

  57. Kraus GF, Greer SC (1984) Vapor pressures of supercooled H2O and D2O. J Phys Chem 88:4781–4785.

    Article  CAS  Google Scholar 

  58. Kuhs WF, Lehmann MS (1986) Oxygen disorder and the geometry of the water molecule in ice Ih. In: Neilson GW, Enderby JE (eds) Water and aqueous solutions. Colston Pap 37. Hilger, Bristol Boston, pp 75–82.

    Google Scholar 

  59. Lang EW, Lüdemann HD (1980) Pressure and temperature dependence of the longitudinal deuterium relaxation times in supercooled heavy water to 300 MPa and 188 K. Ber Bunsenges Phys Chem 84:462–470.

    CAS  Google Scholar 

  60. Lang EW, Lüdemann HD (1982) Anomalies of liquid water. Angew Chem Int Edn Engl 21:315–329.

    Article  Google Scholar 

  61. Lang EW, Lüdemann HD (1985) p, T, c-Dependence of 2H Spin-Lattice Relaxation Rates in Supercooled LiCl-D2O Solutions. Ber Bunsenges Phys Chem 89:508–516.

    CAS  Google Scholar 

  62. Lang EW, Fink W, Lüdemann HD (1984a) The p, T, c-dependence of deuterium spin-lattice relaxation rates in supercooled LiCl-, NaCl-and MgCl2-D2O solutions. J Phys C7:173–177.

    Google Scholar 

  63. Lang EW, Lüdemann HD, Piculell L (1984b) Nuclear magnetic relaxation rate dispersion in supercooled heavy water under high pressure. J Chem Phys 81:3820–3827.

    Article  CAS  Google Scholar 

  64. Lepault J, Freeman R, Dubochet J (1983) Electron beam induced “vitrified ice”. J Microsc (Oxford) 132:RP3–RP4.

    Article  CAS  Google Scholar 

  65. Luyet B, Rasmussen D (1968) Study by differential thermal analysis of the temperatures of instability of rapidly cooled solutions of glycerol, ethylene glycol, sucrose and glucose. Biodynamica 10:167–191.

    Google Scholar 

  66. MacFarlane DR, Angell CA (1984) Nonexistent glass transition for amorphous solid water. J Phys Chem 88:759–762.

    Article  CAS  Google Scholar 

  67. MacFarlane DR, Kadiyala RK, Angell CA (1983a) Cooling rate dependence of the ice I nucleation temperature in aqueous LiCl solutions. J Phys Chem 87:235–238.

    Article  CAS  Google Scholar 

  68. MacFarlane DR, Kadiyala RK, Angell CA (1983b) Homogeneous nucleation and growth of ice from solutions. TTT curves, the nucleation rate, and the stable glass criterion. J Chem Phys 79:3921–3927.

    Article  CAS  Google Scholar 

  69. MacKenzie AP (1977) Non-equilibrium freezing behaviour of aqueous systems. Philos Trans R Soc London Scr B 278:167–189.

    Article  CAS  Google Scholar 

  70. Mayer E (1985) Vitrification of pure liquid water. J Microsc (Oxford) 140:3–15.

    Article  CAS  Google Scholar 

  71. Mayer E (1986) Vitrified dilute aqueous solutions 1. Infrared spectra of alkali metal nitrates and perchlorates as solutes. J Phys Chem 90:4455–4461.

    Article  CAS  Google Scholar 

  72. Mayer E, Brüggeller P (1982) Vitrification of pure liquid water by high pressure jet freezing. Nature (London) 298:715–718.

    Article  CAS  Google Scholar 

  73. Mayer E, Hallbrucker A (1987) Cubic ice from liquid water. Nature (London) 325:601–602.

    Article  CAS  Google Scholar 

  74. Mayer E, Pletzer R (1986) Astrophysical implications of amorphous ice-a microporous solid. Nature (London) 319:298–301.

    Article  CAS  Google Scholar 

  75. McDowall AW, Chang JJ, Freeman R, Lepault J, Walter CA, Dubochet J (1983) Electron microscopy of frozen hydrated sections of vitreous ice and vitrified biological samples. J Microsc (Oxford) 131:1–9.

    Article  CAS  Google Scholar 

  76. Narten AH, Levy HA (1972) Liquid water: Scattering of X-rays. In: Franks F (ed) Water, a comprehensive treatise, vol 1. Plenum, New York London, pp 311–331.

    Google Scholar 

  77. Oguni M, Angell CA (1980) Heat capacities of H2O + H2O2, and H2O+N2H4, binary solutions: Isolation of a singular component for Cp of supercooled water. J Chem Phys 73:1948–1954.

    Article  CAS  Google Scholar 

  78. Packer KJ (1977) The dynamics of water in heterogeneous systems. Philos Trans R Soc London Scr B 278:59–87.

    Article  CAS  Google Scholar 

  79. Plattner H, Bachmann L (1982) Cryofixation: A tool in biological ultrastructural research. Int Rev Cytol 79:237–304.

    Article  PubMed  CAS  Google Scholar 

  80. Pohl RO (1975) Phonon scattering in amorphous solids. In: Challis LJ, Rampton VW, Wyatt AFG (eds) Phonon scattering in solids. Plenum, New York London, pp 107–114.

    Google Scholar 

  81. Pruppacher HR, Klett JD (1980) Microphysics of clouds and precipitation. Reidel, Dordrecht Boston London.

    Google Scholar 

  82. Rahman A, Stillinger FH (1973) Hydrogen-bond patterns in liquid water. J Am Chem Soc 95:7943–7948.

    Article  CAS  Google Scholar 

  83. Rand RP, Das S, Parsegian VA (1985) The hydration force, its character, universality and application: some current issues. Chem Scr 25:15–21.

    CAS  Google Scholar 

  84. Rasmussen DH, Macenzie AP (1973) Clustering in supercooled water. J Chem Phys 59:5003–5013.

    Article  CAS  Google Scholar 

  85. Resing HA (1972) NMR relaxation of adsorbed molecules with emphasis on adsorbed water. Adv Mol Relaxat Processes 3:199–226.

    Article  CAS  Google Scholar 

  86. Robards AW, Sleytr UB (1985) Low temperature methods in biological electron microscopy. In: Glauert AM (ed) Practical methods in electron microscopy, vol 10. Elsevier, Amsterdam.

    Google Scholar 

  87. Ruhl RC (1967) Cooling rates in splat cooling. Mater Sci Eng 1:313–320.

    Article  Google Scholar 

  88. Sargeant PT, Roy R (1968) A new approach of prediction of glass formation. Mater Res Bull 3:265–280.

    Article  Google Scholar 

  89. Sorensen CM (1983) Densities and partial molar volumes of supercooled aqueous solutions. J Chem Phys 79:1455–1461.

    Article  CAS  Google Scholar 

  90. Speedy RJ (1984) Self-Replicating Structures in Water. J Phys Chem 88:3364–3373.

    Article  CAS  Google Scholar 

  91. Speedy RJ, Angell CA (1973) Isothermal compressibility of supercooled water and evidence for a thermodynamic singularity at −45°C. J Chem Phys 65:851–858.

    Article  Google Scholar 

  92. Stephenson JL (1956) Ice crystal growth during the rapid freezing of tissues. J Biophys Biochem Cytol 2:45–51.

    Article  PubMed  CAS  Google Scholar 

  93. Stillinger FH (1980) Water revisited. Science 209:451–457.

    Article  PubMed  CAS  Google Scholar 

  94. Stillinger FH, Weber TA (1983) Inherent structure in water. J Phys Chem 87:2833–2840.

    Article  CAS  Google Scholar 

  95. Turnbull D (1969) Under what conditions can a glass be formed? Contemp Phys 10:473–488.

    Article  CAS  Google Scholar 

  96. Uhlmann DR (1972) A kinetic treatment of glass formation. J Non-Crystalline Solids 7:337–348.

    Article  CAS  Google Scholar 

  97. Uhlmann DR (1982) Kinetics of glass formation and devitrification behavior. J Phys C9:175–190.

    Google Scholar 

  98. Umrath W (1983) Berechnung von Gefriertrocknungszeiten für die elektronenmikroskopische Präparation. Mikroskopie (Wien) 40:9–37.

    CAS  Google Scholar 

  99. Williams RC (1954) In: Harris RJC (ed) Biological applications of freezing and drying to electron microscopy. Academic Press, London New York, p 303.

    Google Scholar 

  100. Wood GR, Walton AG (1970) Homogeneous nucleation kinetics of ice from water. J Appl Phys 41:3027–3036.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bachmann, L., Mayer, E. (1987). Physics of Water and Ice: Implications for Cryofixation. In: Steinbrecht, R.A., Zierold, K. (eds) Cryotechniques in Biological Electron Microscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72815-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72815-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72817-4

  • Online ISBN: 978-3-642-72815-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics