Skip to main content

For Consensus (With Branch Lengths)

  • Conference paper
Advances in Data Science and Classification

Abstract

A debate over the use of consensus methods for combining trees, as opposed to combination of data sets, is currently growing in the field of phylogenetics. Resolution of this question is greatly influenced by the consensus method employed (i.e., for unweighted or weighted trees). In the present paper, my main objective is to review some of these methods that allow for the combination of weighted trees. These consensus with branch lengths will be compared to some of the commonly used consensus methods for n-trees. Finally, I will extend the results to supertrees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adams, E. N. III. (1972). Consensus techniques and the comparison of taxonomic trees, Systematic Zoology, 21, 390–397.

    Article  Google Scholar 

  • Barrett, M., Donoghue, M. J. & Sober, E. (1991). Against consensus, Systematic Zoology, 40, 486–493.

    Article  Google Scholar 

  • Brossier, G. (1990). Piecewise hierarchical clustering, Journal of Classification, 7, 197–216.

    Article  Google Scholar 

  • Cucumel, G. (1990). Construction d’une hiérarchie consensus à l’aide d’une ultramétrique centrale, in: Recueil des Textes des Présentations du Colloque sur les Méthodes et Domaines d’Application de la Statistique 1990, Bureau de la Statistique du Québec, Québec, 235–243.

    Google Scholar 

  • de Queiroz, A. (1993). For consensus (sometimes), Systematic Biology, 42, 368–372.

    Google Scholar 

  • de Queiroz, A., Donoghue, M. J. & Kim, J. (1995). Separate versus combined analysis of phylogenetic evidence, Annual Review of Ecology and Systematics, 26, 657–681.

    Article  Google Scholar 

  • Gordon, A. D. (1986). Consensus supertrees: The synthesis of rooted trees containing overlapping sets of labeled leaves, Journal of Classification, 3, 335–348.

    Article  Google Scholar 

  • Hendy, M. D. (1991). A combinatorial description of the closest tree algorithm for finding evolutionary trees, Discrete Mathematics, 96, 51–58.

    Article  Google Scholar 

  • Hendy, M. D. & Penny, D. (1993). Spectral analysis of phylogenetic data, Journal of Classification, 10, 5–24.

    Article  Google Scholar 

  • Huelsenbeck, J. P., Bull, J. J. & Cunningham, W. (1996). Combining data in phylogenetic analysis, Trends in Ecology and Evolution, 11, 152–158.

    Article  Google Scholar 

  • Kirsch, J. A. W., Springer, M. S. & Lapointe, F.-J. Out of Africa: a distance-based approach to character and taxonomic congruence in placental phylogeny, submitted.

    Google Scholar 

  • Kluge, A. G. (1989). A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes), Systematic Biology, 38, 7–25.

    Google Scholar 

  • Lapointe, F.-J. (1997). How to validate phylogenetic trees? A stepwise procedure, in: Data Science, Classification, and Related Methods: Studies in Classification, Data Analysis, and Knowledge Optimization, Hayashi, C., Bock, H. H., Yajima, K., Tanaka, Y., Oshumi, N. & Baba, Y. (Eds), Springer, Tokyo, in press.

    Google Scholar 

  • Lapointe, F.-J. & Cucumel, G. (1997). The average consensus procedure: Combination of weighted trees containing identical or overlapping sets of taxa, Systematic Biology, 46, 306–312.

    Article  Google Scholar 

  • Lapointe, F.-J., Kirsch, J. A. W. & Bleiweiss, R. (1994). Jackknifing of weighted trees: Validation of phylogenies reconstructed from distances matrices, Molecular Phylogenetics and Evolution, 3, 256–267.

    Article  Google Scholar 

  • Lapointe, F.-J., Kirsch, J. A. W. & Hutcheon, J. M. Total evidence, consensus, and bat phylogeny: a distance-based approach, submitted.

    Google Scholar 

  • Landry, P.-A. & Lapointe, F.-J. (1997). Estimation of missing distances in path- length matrices: problems and solutions, in Mathematical Hierarchies and Biology, Mirkin, B., McMorris, F. R., Roberts, F. S. & Rzhetsky, A. (Eds), DEVLACS Series in Discrete Mathematics and Theoretical Computer Science, American Mathematical Society, Providence, 209–218.

    Google Scholar 

  • Lefkovitch, L. P. (1976). Hierarchical clustering from principal coordinates: An efficient method from small to very large number of objects, Mathematical Biosciences, 31, 157–176.

    Article  Google Scholar 

  • Lefkovitch, L. P. (1978). Consensus coordinates from qualitative and quantitative attributes, Biomedical Journal, 20, 679–691.

    Google Scholar 

  • Lefkovitch, L. P. (1985). Euclidean consensus dendrograms and other classification structures, Mathematical Bioscience, 74, 1–15.

    Article  Google Scholar 

  • Margush, T. & McMorris, F. R. (1981). Consensus n-trees. Bulletin of Mathematical Biology, 43, 239–244.

    Google Scholar 

  • Miyamoto, M. M. & Fitch, W M. (1995). Testing species phylogenies and phylogenetic methods with congruence, Systematic Biology, 44, 64–76.

    Google Scholar 

  • Neumann, D. A. (1983). Faithful consensus methods for n-trees, Mathematical Bioscience, 63, 271–287.

    Article  Google Scholar 

  • Sokal, R. R. & Rohlf, F. J. (1981). Taxonomic congruence in the Leptopodomorpha re-examined, Systematic Zoology, 30, 309–325.

    Article  Google Scholar 

  • Stinebrickner, R. (1984a). S-consensus trees and indices, Bulletin of Mathematical Biology, 46, 923–935.

    Google Scholar 

  • Stinebrickner, R. (1984b). An extension of intersection methods from trees to dendrogram, Systematic Zoology, 33, 381–386.

    Article  Google Scholar 

  • Vichi, M. (1993). Un algoritmo dei minimi quadrati per interpolare un insieme di classificazioni gerarchiche con une classificazione consenso, Metron, 51, 139–163.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Lapointe, FJ. (1998). For Consensus (With Branch Lengths). In: Rizzi, A., Vichi, M., Bock, HH. (eds) Advances in Data Science and Classification. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72253-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72253-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64641-9

  • Online ISBN: 978-3-642-72253-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics