Skip to main content

Pressure Controlled Ventilation (PCV): The Ideal Mode of Mechanical Ventilation?

  • Conference paper
Yearbook of Intensive Care and Emergency Medicine 1998

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 1998))

  • 253 Accesses

Abstract

Pressure controlled ventilation (PCV) has been used extensively in the ventilation of neonates, but only over the last decade has it taken off as an alternative mode of mechanical ventilation for intensivists in adult intensive care units (ICU). PCV (often linked synonymously with inverse ratio ventilation as PC-IRV) was introduced to many as a mode of last resort when problems were occurring with more traditional forms of ventilation. PCV offers a mode of ventilation suited to the most complex ventilatory challenges, including severe acute respiratory distress syndrome (ARDS), extremes of airflow obstruction and synchrony with a difficult to wean patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marini J J (1994) Pressure-controlled ventilation. In: Tobin MJ (ed) Principles and practice of mechanical ventilation. McGraw-Hill, New York, pp 305–318

    Google Scholar 

  2. McKibben AW, Ravenscraft SA (1996) Pressure-controlled and volume-cycled ventilation. Clin Chest Med 17: 395–410

    Article  PubMed  CAS  Google Scholar 

  3. Davis K Jr, Branson RD, Campbell RS, Porembka DT (1996) Comparison of volume control and pressure control ventilation: is flow waveform the difference? J Trauma 41: 808–814

    Article  PubMed  Google Scholar 

  4. Mang H, Kacmarek RM, Ritz R, Wilson RS, Kimball WP (1995) Cardiorespiratory effects of volume- and pressure-controlled ventilation at various I/E ratios in an acute lung injury model. Am J Respir Crit Care Med 151: 731–736

    PubMed  CAS  Google Scholar 

  5. Maclntyre NR (1995) Breathing comfort during weaning with two ventilatory modes. Am J Respir Crit Care Med 151: 254–258

    Google Scholar 

  6. Marini J J (1996) Tidal volume, PEEP, and barotrauma. An open and shut case? Chest 109: 302–304

    Article  PubMed  CAS  Google Scholar 

  7. Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 110: 556–565

    PubMed  CAS  Google Scholar 

  8. Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149: 1327–1334

    PubMed  CAS  Google Scholar 

  9. Tremblay L,Valeriza F, Ribeiro SP,Li J, Slutsky AS (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99: 944–952

    Article  PubMed  CAS  Google Scholar 

  10. Amato MBP, Barbas CSV, Medeiros DM, et al (1995) Beneficial effects of the “open lung approach” with low distending pressures in acute respiratory distress syndrome. Am J Respir Crit Care Med 152: 1835–1846

    PubMed  CAS  Google Scholar 

  11. Cereda M, Foti G, Musch G, Sparacino ME, Pesenti A (1996) Positive end-expiratory pressure prevents the loss of respiratory compliance during low tidal volume ventilation in acute lung injury patients. Chest 109: 480–485

    Article  PubMed  CAS  Google Scholar 

  12. Amato MBP, Barbas CSV, Medeiros DM, et al (1996) Improved survival in ARDS: Beneficial effects of a lung protective strategy. Am J Respir Crit Care Med 153: A531 (Abst)

    Google Scholar 

  13. Mergoni M, Volpi A, Rossi A (1997) Inflection point and alveolar recruitment in ARDS. In: Vincent J-L (ed) Yearbook of intensive care and emergency medicine. Springer-Verlag, Berlin, Heidelberg, New York, pp 556–567

    Google Scholar 

  14. Morris AH, Wallace CJ, Menlove RL, et al (1994) Randomized clinical trial of pressure-controlled inverse ratio ventilation and extracorporeal C02 removal for adult respiratory distress syndrome. Am J Respir Crit Care Med 149: 295–305

    PubMed  CAS  Google Scholar 

  15. Slutsky AS (1993) Mechanical Ventilation (ACCP consensus conference). Chest 104: 1833–1859

    Article  PubMed  CAS  Google Scholar 

  16. Marini J J (1994) Ventilation of the acute respiratory distress syndrome. Looking for Mr. Good-mode. Anesthesiology 80: 972–975

    Article  PubMed  CAS  Google Scholar 

  17. Papadakos PJ, Apostolakos MJ (1996) High-inflation pressure and positive end-expiratory pres¬sure. Injurious to the lung? Yes. Crit Care Clin 12: 627–634

    Article  PubMed  CAS  Google Scholar 

  18. Nelson LD (1996) High-inflation pressure and positive end-expiratory pressure. Injurious to the lung? No. Crit Care Clin 12: 603–625

    Article  PubMed  CAS  Google Scholar 

  19. Brower R, Shanholtz C, Shade D, et al (1997) Randomized controlled trial of small volume ventilation (STV) in ARDS. Am J Resp Crit Care Med 155: A93 (Abst)

    Google Scholar 

  20. Brochard L, Roudot-Thoraval F (1997) Tidal volume (Vt) reduction in acute respiratory distress syndrome (ARDS): A multicenter randomized study. Am J Resp Crit Care Med 155: A505 (Abst)

    Google Scholar 

  21. Stewart E, Meade MO, Granton J, et al (1997) Pressure and volume limited ventilation strategy (PLVS) in patients at high risk for ARDS - results of a multicenter trial. Am J Resp Crit Care Med 155: A505 (Abst)

    Google Scholar 

  22. Nahum A (1995) Use of pressure and flow waveforms to monitor mechanically ventilated patients. In: Vincent J-L (ed) Yearbook of intensive care and emergency medicine. Springer-Verlag, Berlin, Heidelberg, New York, pp 89–114

    Google Scholar 

  23. Bolton CF (1996) Neuromuscular conditions in the intensive care unit. Intensive Care Med 22: 841–843

    Article  PubMed  CAS  Google Scholar 

  24. Morley P (1994) Work of breathing. Intensive Care World 11: 117–121

    Google Scholar 

  25. Dick CR, Sassoon CSH (1996) Patient-ventilator interactions. Clin Chest Med 17: 423–438

    Article  PubMed  CAS  Google Scholar 

  26. Maclntyre NR (1996) New modes of mechanical ventilation. Clin Chest Med 17: 411–421

    Article  Google Scholar 

  27. Branson RD, Campbell RS, Davis K Jr, Johnson DJ (1994) Comparison of pressure and flow triggering systems during continuous positive airway pressure. Chest 106: 540–544

    Article  PubMed  CAS  Google Scholar 

  28. Giuliani R, Mascia L, Recchia F, Caracciolo A, Fiore T, Ranieri VM (1995) Patient-ventilator interaction during synchronized intermittent mandatory ventilation. Effects of flow triggering. Am J Respir Crit Care Med 151: 1–9

    PubMed  CAS  Google Scholar 

  29. Esteban A, Frutos F, Tobin MJ, et al (1995) A comparison of four methods of weaning patients from mechanical ventilation. N Engl J Med 332: 345–350

    Article  PubMed  CAS  Google Scholar 

  30. Brochard L, Rauss A, Benito S, et al (1994) Comparison of three methods of gradual withdrawal from ventilatory suport during weaning from mechanical ventilation. Am J Respir Crit Care Med 150: 896–903

    PubMed  CAS  Google Scholar 

  31. Fabry B, Guttmann J, Eberhard L, Bauer T, Haberthur C, Wolff G (1995) An analysis of desynchronization between the spontaneously breathing patient and ventilator during inspiratory pressure support. Chest 107: 1387–1394

    Article  PubMed  CAS  Google Scholar 

  32. Maclntyre NR, Cheng KC, McConnell R (1997) Applied PEEP during pressure support reduces the inspiratory threshold load of intrinsic PEEP. Chest 111: 188–193

    Article  Google Scholar 

  33. Meduri GU (1996) Noninvasive positive-pressure ventilation in patients with acute respiratory failure. Clin Chest Med 17: 513–553

    Article  PubMed  CAS  Google Scholar 

  34. Chatburn RL, El Khatib MF, Smith PG (1994) Respiratory system behavior during mechanical inflation with constant inspiratory pressure and flow. Respir Care 39: 979–988

    Google Scholar 

  35. Gregoretti C, Foti G, Beltrame F, et al (1995) Pressure control ventilation and minitracheotomy in treating severe flail chest trauma. Intensive Care Med 21: 1054–1056

    Article  PubMed  CAS  Google Scholar 

  36. Kacmarek RM, Kirmse M, Nishimura M, Mang H, Kimball WR (1995) The effects of applied vs auto-PEEP on local lung unit pressure and volume in a four-unit lung model. Chest 108: 1073–1079

    Article  PubMed  CAS  Google Scholar 

  37. Brochard L (1996) Pressure-support ventilation: still a simple mode? Intensive Care Med 22: 1137–1138

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Morley, P. (1998). Pressure Controlled Ventilation (PCV): The Ideal Mode of Mechanical Ventilation?. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 1998. Yearbook of Intensive Care and Emergency Medicine, vol 1998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72038-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72038-3_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63798-1

  • Online ISBN: 978-3-642-72038-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics