Skip to main content

Clearance of Virus by T Lymphocytes Mediating Delayed Type Hypersensitivity

  • Conference paper
Arenaviruses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 134))

Abstract

The mammalian defense system against invading microorganisms has been investigated for more than a hundred years, with the ultimate goal, therapeutically and prophylactically. to overcome human disease caused by infectious agents. Not surprisingly, at present such experimentation focuses considerably on viruses, since these agents do not to any noteworthy degree respond to antibiotics or chemotherapy. In spite of this research, however, it is still uncertain by which mechanisms exactly viruses are cleared from the infected host, and how virus-induced, cell-mediated pathology develops. Although the phenomenon of delayed type hypersensitivity (DTH) — of all the immunologically specific mechanisms believed to be important in virus elimination — was the first to be discovered, it is still far from fully understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ada GL, Leung KN, Ertl H (1981) An analysis of effector T cell generation and function in mice exposed to influenza A or Sendai viruses. Immunol Rev 58: 5–24

    PubMed  CAS  Google Scholar 

  • Adorini L, Agarossi G, Fioravanti D, Doria G (1983) Two distinct azobenzenearsonate-specifíc helper T-cell subpopulations mediate different forms of T-B cooperation. Scand J Immunol 17: 99–108

    PubMed  CAS  Google Scholar 

  • Allan JE, Doherty PC (1985) Immune T cells can protect or induce fatal neurological disease in murine lymphocytic choriomeningitis. Cell Immunol 90:401–407

    PubMed  CAS  Google Scholar 

  • Anderson RE, Warner NL (1976) Ionizing radiation and the immune response. Adv Immunol 24:215–335

    PubMed  CAS  Google Scholar 

  • Asherson GL, Allwood GG (1972) Inflammatory lymphoid cells. Cells in immunized lymph nodes that move to sites of inflammation. Immunology 22: 493–502

    PubMed  CAS  Google Scholar 

  • Asherson GL, Zembala M (1974) Suppression of contact sensitivity by T cells in the mouse. I. Demonstration that suppressor cells act on the effector stage of contact sensitivity; and their induction following in vitro exposure to antigen. Proc R Soc Lond [Biol] 187: 329–348

    CAS  Google Scholar 

  • Askenase PW, Atwood JE (1976) Basophils in tuberculin and “Jones-Mote” delayed reactions of humans. J Clin Invest 58: 1145–1154

    PubMed  CAS  Google Scholar 

  • Askenase PW, van Loveren H (1983) Delayed-type hypersensitivity: activation of mast cells by antigen-specific T cell factors initiates the cascade of cellular interactions. Immunol Today 4:259–264

    Google Scholar 

  • Baenziger J, Hengartner H, Zinkernagel RM, Cole GA (1986) Induction or prevention of immunopathological disease by cloned T cell lines specific for lymphocytic choriomeningitis virus. Eur J Immunol 16: 387–393

    PubMed  CAS  Google Scholar 

  • Baldwin RW, Robins RA (1976) Factors interfering with immunological rejection of tumors. Br Med Bull 32: 118–123

    PubMed  CAS  Google Scholar 

  • Bansal SC, Hellstrom KE, Hellstrom I, Sjogren HO (1973 a) Cell-mediated immunity and blocking serum activity to tolerated allografts in rats. J Exp Med 136: 590–602

    Google Scholar 

  • Bansal SC, Hellstrom I, Hellstrom KE, Wright PW (1973 b) Cell-mediated immunity and blocking serum activity before and after breakage of allograft tolerance in rats. Transplantation 16: 610–620

    PubMed  CAS  Google Scholar 

  • Bengtson IA, Wooley JG (1936) Cultivation of the virus of lymphocytic choriomeningitis in the developing chick embryo. Public Health Rep 51: 29–41

    Google Scholar 

  • Berche PA, North RJ (1982) Non-H-2 restriction of expression of passively transferred delayed sensitivity. J Exp Med 155: 1334–1343

    PubMed  CAS  Google Scholar 

  • Bevan MJ (1975) The major histocompatibility complex determines susceptibility to cytotoxic T cells directed against minor histocompatibility antigens. J Exp Med 142: 1349–1364

    PubMed  CAS  Google Scholar 

  • Bianchi ATJ, Hooijkaas H, Benner R, Tess R, Nordin AA, Schreier MH (1981) Clones of helper T cells mediate antigen-specific H-2-restricted DTH. Nature 290:62–63

    PubMed  CAS  Google Scholar 

  • Biddison WE, Hansen TH, Levy RB, Doherty PC (1978) Involvement of H-2L gene products in virus in virus-immune T cell recognition. Evidence for an H-2L-restricted T-cell response. J Exp Med 148:1678–1686

    PubMed  CAS  Google Scholar 

  • Blanden RV (1971) Mechanisms of recovery from a generalized viral infection: mousepox. II. Passive transfer of recovery mechanisms with immune lymphoid cells. J Exp Med 133: 1074–1089

    PubMed  CAS  Google Scholar 

  • Blanden RV (1974) T cell response to viral and bacterial infection. Transplant Rev 19: 56–88

    PubMed  CAS  Google Scholar 

  • Blanden RV, Mims CA (1973) Macrophage activation in mice infected with ectromelia or lymphocytic choriomeningitis viruses Aust J Exp Biol Med Sci 51: 393–398

    PubMed  CAS  Google Scholar 

  • Boyd W (1961) A textbook of pathology, 7th edn. Henry Kimpton, London

    Google Scholar 

  • Bro-Jørgensen K (1978) The interplay between lymphocytic choriomeningitis virus, immune function and hemopoiesis in mice. Adv Virus Res 22: 327–370

    PubMed  Google Scholar 

  • Burger DR, Vetto RM (1982) Vascular endothelium as a major participant in T-lymphocyte immunity. Cell Immunol 70: 357–361

    PubMed  CAS  Google Scholar 

  • Burnet MF (1959) The clonal selection theory of acquired immunity. Cambridge University Press, Cambridge

    Google Scholar 

  • Byrne JA, Oldstone MBA (1984) Biology of cloned cytotoxic T lymphocytes specific for lymphocytic choriomeningitis virus: Clearance of virus in vivo. J Virol 51: 682–686

    PubMed  CAS  Google Scholar 

  • Camenga DL, Walker DH, Murphy FA (1977) Anticonvulsant prolongation of survival in adult murine lymphocytic choriomeningitis. I. Drug treatment and virologic studies. J Neuropathol Exp Neurol 35:9–20

    Google Scholar 

  • Cantor H, Boyse EA (1975 a) Functional subclasses of T lymphocytes bearing different Ly antigens. I. The generation of functionally distinct T-cell subclasses is a differentiative process independent of antigen. J Exp Med 141: 1376–1389

    PubMed  CAS  Google Scholar 

  • Cantor H, Boyse EA (1975b) Functional subclasses of T lymphocytes bearing different Ly+ antigens. II. Cooperation between subclasses of Ly+ cells in the generation of killer activity. J Exp Med 141:1390–1399

    PubMed  CAS  Google Scholar 

  • Chase MW (1945) The cellular transfer of cutaneous hypersensitivity to tuberculin. Proc Soc Exp Biol Med 59:134–135

    Google Scholar 

  • Cihak J, Lehmann-Grube F (1978) Immunological tolerance to lymphocytic choriomeningitis virus in neonatally infected virus carrier mice: evidence supporting a clonal inactivation mechanism. Immunology 34: 265–275

    PubMed  CAS  Google Scholar 

  • Clatch RJ, Melvold RW, Miller SD, Lipton HL (1985) Theiler’s murine encephalomyelitis virus (TMEV)-induced demyelinating disease in mice is influenced by the H-2D region: correlation with TMEV-specific delayed-type hypersensitivity. J Immunol 135: 1408–1414

    PubMed  CAS  Google Scholar 

  • Coe JE, Feldman JD, Lee S (1966) Immunologic competence of thoracic duct cells. I. Delayed hypersensitivity. J Exp Med 123: 267–281

    CAS  Google Scholar 

  • Cole GA, Nathanson N (1974) Lymphocytic choriomeningitis. Prog Med Virol 18: 94–110

    PubMed  CAS  Google Scholar 

  • Cole GA, Nathanson N, Prendergast RA (1972) Requirement for theta-bearing cells in lymphocytic choriomeningitis virus-induced central nervous system disease. Nature 238: 335–337

    PubMed  CAS  Google Scholar 

  • Colizzi V, Ferluga J, Garreau F, Malkovsky M, Asherson GL (1984) Suppressor cells induced by BCG release non-specific factors in vitro which inhibit DNA synthesis and interleukin-2 production. Immunology 51: 65–71

    PubMed  CAS  Google Scholar 

  • Cooper JMcA, Eichmann K (1985) Limiting dilution analysis of induced unresponsiveness to trinitrophenyl: increased suppression of cytotoxic T prescursor cells at unchanged frequencies. J Mol Cell Immunol 2:83–94

    PubMed  CAS  Google Scholar 

  • David JR (1968) Delayed hypersensitivity. In: Miescher A, Muller-Eberhard H (eds) Textbook of immunopathology 1. Grune and Stratton, New York

    Google Scholar 

  • Davies P, Allison AC (1976) Secretion of macrophage enzymes in relation to the pathogenesis of chronic inflammation. In: Nelson DS (ed) Immunobiology of the macrophage. Academic Press, New York

    Google Scholar 

  • Dennert G, Weiss S, Warner JF (1981) T cells may express multiple activities: specific allohelp, cytolysis and delayed-type hypersensitivity are expressed by a cloned T-cell line. Proc Natl Acad Sci USA 78:4540–4543

    PubMed  CAS  Google Scholar 

  • Dienes L, Mallory TB (1932) Histological studies of hypersensitive reactions. I. The contrast between the histological response in the tuberculin (allergic) type and the anaphylactic type of skin reactions. Am J Pathol 8: 689–710

    PubMed  CAS  Google Scholar 

  • Doherty PC, Allan JE (1985) Participation of cyclophosphamide-resistant T cells in murine lymphocytic choriomeningitis. Scand J Immunol 21: 127–132

    PubMed  CAS  Google Scholar 

  • Doherty PC, Zinkernagel (1974) T-cell-mediated immunopathology in viral infections. Transplant Rev 19: 89–120

    PubMed  CAS  Google Scholar 

  • Doherty PC, Zinkernagel RM (1975) Capacity of sensitized thymus-derived lymphocytes to induce fatal lymphocytic choriomeningitis is restricted by the H-2 gene complex. J Immunol 114: 30–33

    PubMed  CAS  Google Scholar 

  • Doherty PC, Zinkernagel RM, Ramshaw IA (1974) Specificity and development of cytotoxic thymus-derived lymphocytes in lymphocytic choriomeningitis. J Immunol 112: 1548–1552

    PubMed  CAS  Google Scholar 

  • Doherty PC, Blanden RV, Zinkernagel RM (1976) Specificity of virus-immune effector T cells for H-2K or H-2D compatible interactions: implication for H-antigen diversity. Transplant Rev 29: 89–124

    PubMed  CAS  Google Scholar 

  • Dvorak HF (1974) Delayed hypersensitivity. In: Zweifach BW, Grant L, McCluskey (eds), The inflammatory process. Academic Press, New York

    Google Scholar 

  • Erb P, Feldmann M (1975) The role of macrophages in the generation of T-helper cells. II. The genetic control of the macrophage-T-cell interaction for helper cell induction with soluble antigens. J Exp Med 142:460–472

    PubMed  CAS  Google Scholar 

  • Ertl H (1981) Adoptive transfer of delayed-type hypersensitivity to Sendai virus. II. Different modes of antigen presentation determine K, D-region or 1-region restriction of T cells mediating delayed-type hypersensitivity to Sendai virus. Cell Immunol 63: 188–192

    PubMed  CAS  Google Scholar 

  • Esiri MM (1980) Poliomyelitis: immunoglobulin-containing cells in the central nervous system in acute and convalescent phases of the human disease. Clin Exp Immunol 40:42–48

    PubMed  CAS  Google Scholar 

  • Fujimoto S, Greene M, Sehon AH (1975) Immunosuppressor T cells and their factors in tumor-bearing hosts. In: Singhal SK, Sinclair NR StC (eds) Suppressor cells in immunity. University of Western Ontario, London (Canada)

    Google Scholar 

  • Gell PGH, Coombs RRA (1963) Clinical aspects of immunology. Blackwell, Oxford

    Google Scholar 

  • George M, Vaughan JH (1962) In vitro cell migration as a model for delayed hypersensitivity. Proc Soc Exp Biol Med 111: 514–521

    PubMed  CAS  Google Scholar 

  • Germain RN, Benacerraf B (1981) A single major pathway of T-lymphocyte interactions in antigen-specific immune suppression. Scand J Immunol 13: 1–10

    PubMed  Google Scholar 

  • Gershon RK (1975) A disquisition on suppressor T cells. Transplant Rev 26: 170–185

    PubMed  CAS  Google Scholar 

  • Gilbert KM, Hoffmann MK (1983) Suppressor B lymphocytes. Immunol Today 4: 253–255

    Google Scholar 

  • Gordon RD, Mathieson BJ, Samelson LE, Boyse EA, Simpson E (1976) The effect of allogeneic presensitization on H-Y graft survival and in vitro cell-mediated responses to H-Y antigen. J Exp Med 144:810–820

    PubMed  CAS  Google Scholar 

  • Gray DF, Jennings PA (1955) Allergy in experimental mouse tuberculosis. Am Rev Tuberc 72:171–195

    PubMed  CAS  Google Scholar 

  • Greene MI, Weiner HL (1980) Delayed hypersensitivity in mice infected with reovirus. II. Induction of tolerance and suppressor T cells to viral specific gene products. J Immunol 125: 283–287

    PubMed  CAS  Google Scholar 

  • Hellstrom KE, Hellstrom I (1974) Lymphocyte-mediated cytotoxicity and blocking serum activity to tumor antigens. Adv Immunol 18: 209–277

    PubMed  CAS  Google Scholar 

  • Hirschberg H, Hirschberg T, Jaffe E, Thorsby E (1981) Antigen-presenting properties of human vascular endothelial cells: inhibition by anti-HLA-DR antisera. Scand J Immunol 14: 545–553

    PubMed  CAS  Google Scholar 

  • Hotchin J (1971) Persistent and slow virus infections. Monographs in virology 3. Karger, Basel

    Google Scholar 

  • Huber B, Devinsky O, Gershon RK, Cantor H (1976) Cell-mediated immunity: delayed-type hypersensitivity and cytotoxic responses are mediated by different T-cell subclasses. J Exp Med 143:1534–1539

    PubMed  CAS  Google Scholar 

  • Hurwitz JL, Korngold R, Doherty PC (1983) Specific and nonspecific T-cell recruitment in viral meningitis: possible implications for autoimmunity. Cell Immunol 76: 397–401

    PubMed  CAS  Google Scholar 

  • Jenner E (1889) An inquiry into the causes and effects of the variolae vaccinae 1798. In: History and pathology of vaccination, 2nd edn. Lewis, London Crookshank EM (ed)

    Google Scholar 

  • Jungi TW, Pepys MB (1981) Delayed hypersensitivity reactions to Listeria monocytogenes in rats decomplemented with cobra factor and in C5-deficient mice. Immunology 43: 271–279

    PubMed  CAS  Google Scholar 

  • Katz DH, Benacerraf B (1975) The function and interrelationship of T-cell receptors, Ir genes and other histocompatibility gene products. Transplant Rev 22: 175–195

    PubMed  CAS  Google Scholar 

  • Katz DR (1984) Immunosuppression as a physiological homeostatic mechanism. Immunol Today 5:96–97

    Google Scholar 

  • Katz SI, Heather CJ, Parker D, Turk JL (1974) Basophilic leukocytes in delayed hypersensitivity reactions. J Immunol 113: 1073–1078

    PubMed  CAS  Google Scholar 

  • Kaufmann SHE, Hahn H (1982) Biological functions of the T cell lines with specificity for the intracellular bacterium Listeria monocytogenes in vitro and in vivo. J Exp Med 155: 1754–1765

    PubMed  CAS  Google Scholar 

  • Kaufmann SHE, Ahmed JS, Chahin M, Hahn H (1979 a) Peritoneal exudate T lymphocytes with specificity to sheep red blood cells. Immunology 38: 613–619

    PubMed  CAS  Google Scholar 

  • Kaufmann SHE, Simon MM, Hahn H (1979 b) Specific Lyt 123 T cells are involved in protection against Listeria monocytogenes and in delayed-type hypersensitivity to listerial antigens. J Exp Med 150: 1033–1038

    PubMed  CAS  Google Scholar 

  • Kelso A, Glasebrook AL, Kanagawa O, Brunner KT (1982) Production of macrophage-activating factor by T lymphocyte clones and correlation with other lymphokine activities. J Immunol 129:550–556

    PubMed  CAS  Google Scholar 

  • Klebanoff SJ (1982) Oxygen-dependent cytotoxic mechanisms of phagocytes. In: Gallin JJ, Fauci AS (eds) Advances in host defense mechanisms, vol 1, phagocytic cells. Raven Press, New York

    Google Scholar 

  • Klein J (1982) The science of self-nonself discrimination. Wiley, New York

    Google Scholar 

  • Koch R (1890) Weitere Mittheilungen ueber ein Heilmittel gegen Tuberculose. Dtsch Med Wochenschr 16: 1029–1032

    Google Scholar 

  • Koster F, McGregor DD (1970) Rat thoracic duct lymphocytes: types that participate in inflammation. Science 167: 1137–1139

    PubMed  CAS  Google Scholar 

  • Lamb JR, Skidmore BJ, Green N, Chiller JM, Feldmann M (1983) Induction of tolerance in influenza virus-immune T lymphocyte clones with synthetic peptides of influenza hemagglutinin. J Exp Med 157:1434–1447

    PubMed  CAS  Google Scholar 

  • Landsteiner K, Chase MW (1942) Experiments on transfer of cutaneous sensitivity to simple compounds. Proc Soc Exp Biol Med 49: 688–690

    CAS  Google Scholar 

  • Larsen HS, Russel RG, Rouse BT (1983) Recovery from lethal herpes simplex virus type 1 infection is mediated by cytotoxic T lymphocytes. Infect Immun 41: 197–204

    PubMed  CAS  Google Scholar 

  • Lehmann-Grube F (1971) Lymphocytic choriomeningitis virus. Virology monographs 10. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Lehmann-Grube F, Cihak J, Varho M, Tijerina R (1982) The immune response of the mouse to lymphocytic choriomeningitis virus. II. Active suppression of cell-mediated immunity by infection with high virus doses. J Gen Virol 58: 223–235

    PubMed  CAS  Google Scholar 

  • Lehmann-Grube F, Assmann U, Loeliger C, Moskophidis D, Loehler J (1985) Mechanism of recovery from acute virus infection. I. Role of T lymphocytes in the clearance of lymphocytic choriomeningitis virus from spleens of mice. J Immunol 134: 608–615

    PubMed  CAS  Google Scholar 

  • Leung KN, Ada GL (1980) Cells mediating delayed-type hypersensitivity in the lungs of mice infected with an influenza A virus. Scand J Immunol 12: 393–400

    PubMed  CAS  Google Scholar 

  • Leung KN, Ada GL (1981) Effect of helper T cells on the primary in vitro production of delayed-type hypersensitivity to influenza virus. J Exp Med 153: 1029–1043

    PubMed  CAS  Google Scholar 

  • Leung KN, Ada GL (1982) Different functions of subsets of effector T cells in murine influenza virus infection. Cell Immunol 67: 312–324

    PubMed  CAS  Google Scholar 

  • Leung KN, Ashman RB, Ertl HCJ, Ada GL (1980) Selective suppression of the cytotoxic T cell response to influenza virus in mice. Eur J Immunol 10: 803–810

    PubMed  CAS  Google Scholar 

  • Leung KN, Schiltknecht E, Ada GL (1982) In vivo collaboration between precursor T cells and helper T cells in the development of delayed-type hypersensitivity reaction to influenza virus in mice. Scand J Immunol 16: 257–264

    PubMed  CAS  Google Scholar 

  • Leung KN, Nash AA, Sia DY, Wildy P (1984) Clonal analysis of T-cell responses to herpes simplex virus: isolation, characterization and antiviral properties of an antigen-specific helper T-cell clone. Immunology 53: 623–633

    PubMed  CAS  Google Scholar 

  • Liew FY (1982) Regulation of delayed-type hypersensitivity to pathogens and alloantigens. Immunol Today 3:18–23

    Google Scholar 

  • Liew FY (1983) Delayed-type hypersensitivity to influenza virus. In: Ennis FA (ed) Human immunitiy to viruses. Academic, New York

    Google Scholar 

  • Liew FY (1984) Lymphocyte subsets involved in delayed-type hypersensitivity. Adv Inflamm Res 7:135–147

    Google Scholar 

  • Liew FY, Russel SM (1980) Delayed-type hypersensitivity to influenza virus. Induction of antigen-specific suppressor T cells for delayed-type hypersensitivity to hemagglutinin during influenza virus infection in mice. J Exp Med 151: 799–814

    PubMed  CAS  Google Scholar 

  • Lillie RD, Armstrong C (1945) Pathology of lymphocytic choriomeningitis in mice. Arch Pathol 40: 141–150

    Google Scholar 

  • Lin Y-L, Askonas BA (1981) Biological properties of an influenza A virus-specific killer T cell clone. Inhibition of virus replication in vivo and induction of delayed-type hypersensitivity reactions. J Exp Med 154: 225–234

    PubMed  CAS  Google Scholar 

  • Lubaroff DM, Waksman BH (1968) Bone marrow as source of cells in reactions of cellular hypersensitivity. II. Identification of allogeneic or hybrid cells by immunofluorescense in passively transferred tuberculin reactions. J Exp Med 128: 1437–1449

    PubMed  CAS  Google Scholar 

  • Lukacher AE, Braciale VL, Braciale TJ (1984) In vivo effector function of influenza virus-specific cytotoxic T lymphocyte clones is highly specific. J Exp Med 160:814–826

    PubMed  CAS  Google Scholar 

  • MacDonald HR, Ceredig R, Cerottini J-C, Kelso A, Glasebrook AL (1983) Heterogeneity of lym-phokine production by T lymphocytes: analysis of established clones and primary limiting dilution microcultures. In: Yamamura Y, Tada T (eds), Progress in immunology V. Academic, New York

    Google Scholar 

  • Mackaness GB (1971) Delayed hypersensitivity and the mechanism of cellular resistance to infection. In: Amos B (ed) Progress in immunology. Academic Press, New York

    Google Scholar 

  • Malkovsky M, Medawar PB (1984) Is immunological tolerance (non-responsiveness) a consequence of interleukin 2 deficit during the recognition of antigen? Immunol Today 5: 340–343

    CAS  Google Scholar 

  • Marchal G, Seman M, Milon G, Truffa-Bachi P, Zilberfarb V (1982) Local adoptive transfer of skin delayed-type hypersensitivity initiated by a single T lymphocyte. J Immunol 129: 954–958

    PubMed  CAS  Google Scholar 

  • Marker O, Volkert M (1973) Studies on cell-mediated immunity to lymphocytic choriomeningitis virus in mice. J Exp Med 137: 1511–1525

    PubMed  CAS  Google Scholar 

  • Marker O, Thomsen AR (1986) T cell effector function and unresponsiveness in the murine lymphocytic choriomeningitis virus infection. 1. On the mechanism of a selective suppression of the virus-specific DTH response. Scand J Immunol 24: 127–135

    PubMed  CAS  Google Scholar 

  • Marker O, Andersen GT, Volkert M (1976) The interplay between target organ concentrations of lymphocytic choriomeningitis virus and cell-mediated immunity in baby mice. Acta Pathol Microbiol Scand [C] 84: 23–30

    CAS  Google Scholar 

  • Marker O, Nielsen MH, Diemer NH (1984) The permeability of the blood-brain barrier in mice suffering from fatal lymphocytic choriomeningitis virus infection. Acta Neuropathol (Berl) 63:229–239

    CAS  Google Scholar 

  • Marker O, Thomsen AR, Vokert M, Hansen BL, Clemmensen JH (1985) High-dose survival in the lymphocytic choriomeningitis virus infection is accompanied by suppressed DTH but unaffected T-cell cytotoxicity. Scand J Immunol 21: 81–91

    PubMed  CAS  Google Scholar 

  • McCluskey RT, Werdelin O (1971) The origin and nature of the mononuclear cells participating in immunologically induced inflammatory reactions. In: Cohen S, Cudkowicz G, McCluskey RT (eds) Cellular interactions in the immune response. 2nd Int Convoc Immunol, Buffalo, New York. Karger, Basel

    Google Scholar 

  • McCluskey RT, Benacerraf B, McCluskey JW (1963) Studies on the specificity of the cellular infiltrate in delayed hypersensitivity reactions. J Immunol 90: 466–477

    PubMed  CAS  Google Scholar 

  • Miller JFAP, Vadas MA, Whitelaw A, Gamble J (1975) H-2 gene complex restricts transfer of delayed-type hypersensitivity in mice. Proc Natl Acad Sci USA 72: 5095–5098

    PubMed  CAS  Google Scholar 

  • Moench TR, Griffin DE (1984) Immunocytochemical identification and quantitation of mononuclear cells in cerebrospinal fluid, meninges, and brain during acute viral meningoencephalitis. J Exp Med 159:77–88

    PubMed  CAS  Google Scholar 

  • Moll H, Eichmann K, Simon MM (1985) Immunoregulation by mouse T-cell clones. II. The same H-Y-specific T helper clone can provide help for the generation of cytotoxic lymphocytes and antibody-secreting cells. Immunology 54: 255–264

    PubMed  CAS  Google Scholar 

  • Morris AG, Lin Y-L, Askonas BA (1982) Immune interferon release when a cloned cytotoxic T-cell line meets its correct influenza-infected target cell. Nature 295: 150–152

    PubMed  CAS  Google Scholar 

  • Murphy DB (1978) The I-J subregion of the murine H-2 gene complex. Springer Semin Immunopathol 1:111–131

    Google Scholar 

  • Nash AA (1984) Viruses as regulators of delayed hypersensitivity T-cell and suppressor T-cell function. In: Notkins AL, Oldstone MBA (eds) Concepts in viral pathogenesis. Springer, New York Berlin Heidelberg Tokyo

    Google Scholar 

  • Nash AA, Ashford NPN (1982) Split T-cell tolerance in herpes simplex virus-infected mice and its implication for anti-viral immunity. Immunology 45: 761–767

    PubMed  CAS  Google Scholar 

  • Nash AA, Gell PGH (1981) The delayed hypersensitivity T cell and its interaction with other T cells. Immunol Today 2: 162–165

    Google Scholar 

  • Nash AA, Gell PGH (1983) Membrane phenotype of murine effector and suppressor T cells involved in delayed hypersensitivity and protective immunitiy to herpes simplex virus. Cell Immunol 75:348–355

    PubMed  CAS  Google Scholar 

  • Nash AA, Phelan J, Gell PGH, Wildy P (1981a) Tolerance and immunity in mice infected with herpes simplex virus: studies on the mechanism of tolerance to delayed-type hypersensitivity. Immunology 43: 363–369

    PubMed  CAS  Google Scholar 

  • Nash AA, Phelan J, Wildy P (1981b) Cell-mediated immunity in herpes simplex virus-infected mice: H-2 mapping of the delayed-type hypersensitivity response and the antiviral T cell response. J Immunol 126: 1260–1262

    PubMed  CAS  Google Scholar 

  • Nathan CF, Murray HW, Cohn ZA (1980) The macrophage as an effector cell. N Engl J Med 303:622–626

    PubMed  CAS  Google Scholar 

  • Nathanson N, Johnson ED, Camenga DL, Cole GA (1975) Immunosuppression and experimental viral infection: the dual role of the immune response. In: Neter E (ed) The immune system and infectious diseases. Karger, Basel

    Google Scholar 

  • Nelson DS, Boyden SV (1963) The loss of macrophages from peritoneal exudates following the injection of antigens into guinea-pigs with delayed-type hypersensitivity. Immunology 6: 264–275

    PubMed  CAS  Google Scholar 

  • Nielsen MH, Jensen H, Braendstrup O, Werdelin O (1974) Macrophage-lymphocyte clusters in the immune response to soluble protein antigen in vitro. II. Ultrastructure of clusters formed during the early response. J Exp Med 140: 1260–1272

    PubMed  CAS  Google Scholar 

  • North RJ, Spitalny G (1974) Inflammatory lymphocytes in cell-mediated antibacterial immunity: factors governing the accumulation of mediator T cells in peritoneal exudates. Infect Immun 10:489–498

    PubMed  CAS  Google Scholar 

  • Nossal GJV, Ada GL (1971) Antigens, lympoid cells and the immune response. Academic, New York

    Google Scholar 

  • Okumura K, Nonaka M, Hayakawa K, Tada T (1979) Helper T cells expressing an I-J subregion gene product. In: Bach FH, Bonavida B, Vitetta ES, Fox CF (eds) T and B lymphocytes: recognition and function. Academic, New York

    Google Scholar 

  • Oldstone MBA, Dixon FJ (1971a) Immune complex disease in chronic viral infections. J Exp Med 134 (part 2): 32–40

    PubMed  CAS  Google Scholar 

  • Oldstone MBA, Dixon FJ (1971 b) Acute viral infection: tissue injury mediated by anti-viral antibody through a complement effector system. J Immunol 107: 1274–1280

    PubMed  CAS  Google Scholar 

  • Owens SL, Osebold JW, Zee YC (1981) Dynamics of B-lymphocytes in the lungs of mice exposed to aerosoüzed influenza virus. Infect Immun 33:231–238

    PubMed  CAS  Google Scholar 

  • Pevear DC (1984) Immunological parameters of infection of adult mice with lethal and non-lethal substrains of lymphocytic choriomeningitis virus. Thesis, Graduate Faculty of Rensselaer Polytechnic Institute, Troy, New York

    Google Scholar 

  • Pevear DC, Pfau CJ (1984) Functional heterogeneity of in vitro stimulated memory cells to murine lymphocytic choriomeningitis virus. Abstract, American Society for Virology

    Google Scholar 

  • Pfau CJ, Valenti JK, Pevear DC, Hunt KD (1982) Lymphocytic choriomeningitis virus killer T cells are lethal only in weakly disseminated murine infections. J Med Exp 156: 79–89

    CAS  Google Scholar 

  • Pfau CJ, Saron M-F, Pevear DC (1985) Lack of correlation between cytotoxic T lymphocytes and lethal murine lymphocytic choriomeningitis. J Immunol 135: 597–602

    PubMed  CAS  Google Scholar 

  • Platt JL, Grant BW, Allison AE, Michael AF (1983) Immune cell populations in cutaneous delayedtype hypersensitivity. J Exp Med 158: 1227–1242

    PubMed  CAS  Google Scholar 

  • Prystowsky MB, Ely JM, Beller DI, Eisenberg L, Goldman J, Goldman M, Goldwasser E, Ihle J, Quintans J, Remold H, Vogel SN, Fitch FW (1982) Alloreactive cloned T cell lines. VI. Multiple lymphokine activities secreted by helper and cytolytic cloned T lymphocytes. J Immunol 129:2337–2344

    PubMed  CAS  Google Scholar 

  • Richerson HB, Dvorak HF, Leskowitz S (1969) Cutaneous basophilic hypersensitivity: a new interpretation of the Jones-Mote reaction. J Immunol 103: 1431–1434

    PubMed  CAS  Google Scholar 

  • Robinson JH, Naysmith JD (1976) A comparison of four methods for measuring cutaneous delayedtype hypersensitivity reactions to protein antigens in the mouse. Scand J Immunol 5: 299–304

    PubMed  CAS  Google Scholar 

  • Roitt I, Brostoff J, Male O (1985) Immunological tolerance. In: Roitt I, Brostoff J, Male O (eds) Immunology. Churchill Livingstone, Edinburgh, London, Melbourne, New York

    Google Scholar 

  • Ruddle NH (1972) Approaches to the quantitative analysis of delayed hupersensitivity. Curr Top Microbiol Immunol 57: 75–110

    PubMed  CAS  Google Scholar 

  • Sabolovic D, Beugnot M-C, Dumont F, Bujodoux M (1972) A new method to measure the specific cellular component of a delayed hypersensitivity response in the ear of the mouse. Eur J Immunol 2: 604–606

    PubMed  CAS  Google Scholar 

  • Salvin SB (1962) Specificity of allergic reactions. V. Observations on the systemic delayed reaction in guinea pigs sensitized to purified protein-conjugates. J Immunol 89: 910–919

    PubMed  CAS  Google Scholar 

  • Saron M-F, Guillon J-C (1983) Evidence for the presence of T lymphocytes mediating lymphocytic choriomeningitis virus-specific delayed-type hypersensitivity in meningeal infiltrates of infected mice. Ann Virol (Inst Pasteur) 134E: 309–314

    Google Scholar 

  • Schiltknecht E, Ada GL (1985) Influenza virus-specific T cells fail to reduce lung virus titres in cyclosporin-treated, infected mice. Scand J Immunol 22: 99–103

    PubMed  CAS  Google Scholar 

  • Schrier RD, Ishioka GY, Pizer LI, Moorhead JW (1985) Delayed hypersensitivity and immune protection against herpes simplex virus: suppressor T cells that regulate the induction of delayed hypersensitivity effector T cells also regulate the induction of protective T cells. J Immunol 134:2889–2893

    PubMed  CAS  Google Scholar 

  • Scheper RJ, Dinther-Janssen ACHM van, Polak L (1985) Specific acumulation of hapten-reactive T cells in contact sensitivity reaction sites. J Immunol 134: 1333–1336

    PubMed  CAS  Google Scholar 

  • Schwendemann G, Loehler J, Lehmann-Grube F (1983) Evidence for cytotoxic T-lymphocyte-target cell interaction in brains of mice infected intracerebrally with lymphocytic choriomeningitis virus. Acta Neuropathol (Berl) 61: 183–195

    CAS  Google Scholar 

  • Sethi KK, Omata Y, Schneweis KE (1983) Protection of mice from fatal herpes simplex virus type 1 infection by adoptive transfer of cloned virus-specific and H-2 restricted cytotoxic T lymphocytes. J Gen Virol 64:443–447

    PubMed  Google Scholar 

  • Shearer GM, Rehn TG, Schmitt-Verhulst A-M (1976) Role of the murine major histocompatibility complex in the specificity of in vitro T-cell-mediated lympholysis against chemically-modified autologous lymphocytes. Transplant Rev 29: 222–248

    PubMed  CAS  Google Scholar 

  • Sinclair NR StC (1985) Modulation of immunity by antigens, antibodies and antigen-antibody complexes. In: Mitchell HS (ed) The modulation of immunity. Pergamon, Oxford Stetson CA (1959)

    Google Scholar 

  • Stetson CA (1959) Endotoxins and bacterial allergy. In: Lawrence HS (ed) Cellular and humoral aspects of the hypersensitive states. Hoeber-Harper, New York

    Google Scholar 

  • Tada T, Takemori T, Okumura K, Nonaka M, Tokuhisa T (1978) Two distinct types of helper T cells involved in the secondary antibody response: independent and synergistic effects of Ia-and Ia+ helper T cells. J Exp Med 147: 446–458

    PubMed  CAS  Google Scholar 

  • Taylor PM, Askonas BA (1983) Diversity in the biological properties of anti-influenza cytotoxic T cell clones. Eur J Immunol 13: 707–711

    PubMed  CAS  Google Scholar 

  • Taylor RB (1984) Mechanism of T-cell tolerance. Nature 307:317

    PubMed  CAS  Google Scholar 

  • Thomsen AR, Marker O (1986) T cell effector function and unresponsiveness in the murine lymphocytic choriomeningitis virus infection. 2. DTH unresponsiveness reflects a defective differentiation from TD precursor to effector cell. Scand J Immunol 24: 127–135

    PubMed  Google Scholar 

  • Thomsen AR, Volkert M (1983) Studies on the role of mononuclear phagocytes in resistance to acute lymphocytic choriomeningitis virus infection. Scand J Immunol 18: 271–277

    PubMed  CAS  Google Scholar 

  • Thomsen AR, Volkert M, Marker O (1979) The timing of the immune response in relation to virus growth determines the outcome of the LCM infection. Acta Pathol Microbiol Scand [C] 87:47–54

    Google Scholar 

  • Thomsen AR, Bro-Jørgensen K, Volkert M (1983 a) Fatal meningitis following lymphocytic choriomeningitis virus infection reflects delayed-type hypersensitivity rather than cytotoxicity. Scand J Immunol 17:139–145

    PubMed  CAS  Google Scholar 

  • Thomsen AR, Volkert M, Bro-Jørgensen K (1983b) Virus elimination in acute lymphocytic choriomeningitis virus infection. Scand J Immunol 17: 489–495

    PubMed  CAS  Google Scholar 

  • Tosolini FA, Mims CA (1971) Effect of murine strain and viral strain on the pathogenesis of lymphocytic choriomeningitis infection and a study of footpad responses. J Infect Dis 123: 134–144

    PubMed  CAS  Google Scholar 

  • Traub E (1935) A filterable virus recovered from white mice. Science 81: 298–299

    PubMed  CAS  Google Scholar 

  • Tripathy SP, Mackaness GB (1970) The effect of cytotoxic agents on the passive transfer of cell-mediated immunity. J Exp Med 130: 17–30

    Google Scholar 

  • Tucker MJ, Bretscher PA (1982) T cells co-operating in the induction of delayed-type hypersensitivity act via the linked recognition of antigenic determinants. J Exp Med 155: 1037–1049

    PubMed  CAS  Google Scholar 

  • Turk JL (1975) Delayed hypersensitivity. Frontiers of biology 4. North-Holland, Amsterdam

    Google Scholar 

  • Turk JL, Parker D (1982) Effect of cyclophosphamide on immunological control mechanisms. Immunol Rev 65: 99–113

    PubMed  CAS  Google Scholar 

  • Varho M, Lehmann-Grube F, Simon MM (1981) Effector T lymphocytes in lymphocytic choriomeningitis virus-infected mice. Cytolytic activity of Lyt-23 spleen cells in vitro does not correlate with elimination of infectious virus from spleen. J Exp Med 153: 992–997

    PubMed  CAS  Google Scholar 

  • Voisin GA (1976) Biological roles of rodent anaphylactic IgGl antibodies. Agents Actions 6: 5–15

    PubMed  CAS  Google Scholar 

  • Voisin GA, Kinsky R, Jansen F, Bernard C (1969) Biological properties of antibody classes in transplantation immune sera. Transplantation 8: 618–632

    PubMed  CAS  Google Scholar 

  • Volkert M (1962) Studies on immunological tolerance to LCM virus. A preliminary report on adoptive immunization of virus carrier mice. Acta Pathol Microbiol Scand 56: 305–310

    PubMed  CAS  Google Scholar 

  • Volkert M, Marker O, Bro-Jørgensen K (1974) Two populations of T lymphocytes immune to the lymphocytic choriomeningitis virus. J Exp Med 139: 1329–1343

    PubMed  CAS  Google Scholar 

  • Volkman A, Collins FM (1968) Recovery of delayed-type hypersensitivity in mice following suppressive doses of X-radiation. J Immunol 101: 846–859

    PubMed  CAS  Google Scholar 

  • Volkman A, Collins FM (1971) The restorative effects of peritoneal macrophages on delayed hypersensitivity following ionizing radiation. Cell Immunol 2: 552–566

    PubMed  CAS  Google Scholar 

  • von Boehmer H, Kisielow P, Haas W (1983) A single Lyt-2+ lymphocyte generates T cells with different functional phenotypes. In: Prog Immunol V: 763–766

    Google Scholar 

  • von Boehmer H, Kisielow P, Leiserson W, Haas W (1984) Lyt-2-T cell-independent functions of Lyt-2+ cells stimulated with antigen or concanavalin A. J Immunol 133: 59–64

    Google Scholar 

  • Waksman BH (1960) A comparative histopathological study of delayed hypersensitive reactions. In: Wolstenholme GEW, O’Connor M (eds) Cellular aspects of immunity. J and A Churchill, London

    Google Scholar 

  • Walker DH, Camenga DL, Whitfield S, Murphy A (1977) Anticonvulsant prolongation of survival in adult murine lymphocytic choriomeningitis. II. Ultrastructural observations of pathogenetic events. J Neuropathol Exp Neurol 36: 21–40

    PubMed  CAS  Google Scholar 

  • Wesslen T (1952) Passive transfer of tuberculin hypersensitivity by viable lymphocytes from the thoracic duct. Acta Tuberc Scand 26: 38–53

    PubMed  CAS  Google Scholar 

  • Wright PW, Hargreaves RE, Bansal SC, Bernstein ID, Hellstrom KE (1973) Allograft tolerance: presumptive evidence that serum factors from tolerant animals that block lymphocyte mediated immunity in vitro are soluble antigen-antibody complexes. Proc Natl Acad Sci USA 70: 2539–2543

    PubMed  CAS  Google Scholar 

  • Yap KL, Ada GL, McKenzie IFC (1978) Transfer of specific cytotoxic T lympocytes protects mice inoculated with influenza virus. Nature 273: 238–239

    PubMed  CAS  Google Scholar 

  • Zinkernagel RM (1976) H-2 restriction of virus specific T-cell mediated effector functions in vivo. II. Adoptive transfer of DTH to murine lymphocytic choriomeningitis virus is restricted by the K and D regions of H-2. J Exp Med 144: 776–787

    PubMed  CAS  Google Scholar 

  • Zinkernagel RM, Althage A (1977) Antiviral protection by virus-immune cytotoxic T cells: infected target cells are lysed before infectious virus progeny is assembled. J Exp Med 145: 644–651

    PubMed  CAS  Google Scholar 

  • Zinkernagel RM, Doherty PC (1973) Cytotoxic thymus-derived lymphocytes in cerebrospinal fluid of mice with lymphocytic choriomeningitis. J Exp Med 138: 1266–1269

    PubMed  CAS  Google Scholar 

  • Zinkernagel RM, Doherty PC (1974) Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248: 701–702

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Marker, O., Thomsen, A.R. (1987). Clearance of Virus by T Lymphocytes Mediating Delayed Type Hypersensitivity. In: Oldstone, M.B.A. (eds) Arenaviruses. Current Topics in Microbiology and Immunology, vol 134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71726-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71726-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71728-4

  • Online ISBN: 978-3-642-71726-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics