Skip to main content

Mapping Arenavirus Genes Causing Virulence

  • Conference paper
Arenaviruses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 133))

Abstract

The reassortment of genetic information from RNA viruses with segmented genomes, i. e., Arenaviridae, Bunyaviridae, Orthomyxoviridae, and Reoviridae families, can occur within cells infected by two different viral strains from the same family (COmpans etal. 1981; FIelds and GReene 1982; WEbster etal. 1982; Palese 1984). The phenomenon of reassortment also occurs in vivo and has been exploited to define the function of viral genes in pathogenesis (FIelds and GReene 1982; WEbster et al. 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed R, Byrne J A, Oldstone MBA (1984) Virus specificity of cytotoxic T lymphocytes generated during acute lymphocytic choriomeningitis virus infection: role of the H-2 region in determining cross-reactivity for different lymphocytic choriomeningitis virus strains. J Virol 51: 34–41

    PubMed  CAS  Google Scholar 

  • Bishop DHL, Shope RE (1980) Bunyaviridae. In: Fraenkel-Conrat H and Wagner RR (eds) Comprehensive virology, Vol. 14: Newly characterized vertebrate viruses, Plenum, New York, pp 1–21

    Google Scholar 

  • Bruns M, Cihak J, Muller G, Lehmann-Grube F (1983) Lymphocytic choriomeningitis virus: VI. Isolation of a glycoprotein mediating neutralization. Virology 130: 247–251

    Google Scholar 

  • Buchmeier MJ (1984) Antigenic and structural studies on the glycoproteins of lymphocytic choriomeningitis virus. In: Compans RW, Bishop DHL (eds) Segmented Negative Strand Viruses.Arenaviruses, Bunyaviruses, and Orthomyxoviruses. Academic, New York, pp 193–200

    Google Scholar 

  • Buchmeier MJ, Oldstone MBA (1979) Protein structure of lymphocytic choriomeningitis virus: evidence for a cell-associated precursor of the virion glycopeptides. Virology 99: 111–120

    Article  PubMed  CAS  Google Scholar 

  • Buchmeier MJ, Oldstone MBA (1981) Molecular studies of LCM virus induced immunopathology: development and characterization of monoclonal antibodies to LCM virus. In: Bishop DHL, Compans RW (eds) The replication of negative strand viruses. Elsevier/North Holland, New York, pp 71–77

    Google Scholar 

  • Buchmeier MJ, Elder JH, Oldstone MBA (1978) Protein structure of lymphocytic choriomeningitis virus: identification of the viral, structural and cell associated polypeptides. Virology 89: 133–145

    Article  PubMed  CAS  Google Scholar 

  • Buchmeier MJ, Welsh R, Dutko F, Oldstone MBA (1980) The virology and immunobiology of lymphocytic choriomeningitis virus infection. Adv Immunol 30: 275–331

    Article  PubMed  CAS  Google Scholar 

  • Buchmeier MJ, Southern P, Parekh B, Oldstone MBA (1985) Molecular and topographic analysis of the glycoproteins of lymphocytic choriomeningitis virus (LCMV). Negative strand virus meeting, Cambridge, September

    Google Scholar 

  • Compans RW, Bishop DHL (1985) Biochemistry of arenaviruses. Curr Topics Microbiol Immunol 114: 153–175

    CAS  Google Scholar 

  • Compans RW, Boersma DP, Cash P, Clerx JPM, Gimenez HB, Kirk WE, Peters CJ, Vezza AC, Bishop DHL (1981) The replication of negative strand viruses. Elsevier, New York

    Google Scholar 

  • Dutko FJ, Oldstone MBA (1983) Genomic and biological variation among commonly used lymphocytic choriomeningitis virus strains. J Gen Virol 64: 1689–1698

    Article  PubMed  CAS  Google Scholar 

  • Fields BN, Greene MI (1982) Genetic and molecular mechanisms of viral pathogenesis: implications for prevention and treatment. Nature 300: 19–23

    Article  PubMed  CAS  Google Scholar 

  • Harnish DG, Dimock K, Bishop DHL, Rawls WE (1983) Gene mapping in Pichinde virus: assignment of viral polypeptides to genomic L and S RNAs. J Virol 46: 638–641

    PubMed  CAS  Google Scholar 

  • Jahrling PB, Frame JD, Smith SB, Monson MH (1985) Endemic Lassa fever in Liberia: III. Characterization of Lassa virus isolates. Trans R Soc Trop Med Hyg 79: 374–377

    Google Scholar 

  • Kirk WE, Cash P, Peters CJ, Bishop DHL (1980) Formation and characterization of an intertypic lymphocytic choriomeningitis recombinant virus. J Gen Virol 51: 213–218

    Article  PubMed  CAS  Google Scholar 

  • Lehmann-Grube F (1971) Lymphocytic choriomeningitis virus. Virol Monogr 10: 1–173

    Google Scholar 

  • Leung WC, Harnish DG, Ramsingh A, Dimock K, Rawls WE (1981) Gene mapping in Pichinde virus. In: Bishop DHL, Compans RW (eds) The replication of negative strand viruses. Elsevier/ North-Holland, New York, pp 51–57

    Google Scholar 

  • Oldstone MBA, Sinha YA, Blount P, Tishon A, Rodriguez M, von Wedel R, Lampert PW (1982) Virus-induced alterations in homeostasis: alterations in differentiated functions of infected cells in vivo. Science 218: 1125–1127

    Article  PubMed  CAS  Google Scholar 

  • Oldstone MBA, Ahmed R, Buchmeier MJ, Blount P, Tishon A (1985) Perturbation of differentiated functions during viral infection in vivo. I. Relationship of lymphocytic choriomeningitis virus and host strains to growth hormone deficiency. Virology 142: 158–174

    Google Scholar 

  • Palese P (1984) Reassortment continuum. In: Notkins AL, Oldstone MBA (eds) Concepts in Viral Pathogenesis. Vol. II. Springer, Berlin Heidelberg New York Tokyo, pp 144–151

    Chapter  Google Scholar 

  • Pedersen IR (1979) Structural components and replication of arenaviruses. Adv Virus Res 24: 277–330

    Article  PubMed  CAS  Google Scholar 

  • Peters CJ (1984) Textbook of human virology. PSG Publishing, Littleton

    Google Scholar 

  • Riviere Y, Oldstone MBA (1986) Genetic reassortants of lymphocytic choriomeningitis virus: unexpected disease and mechanism of pathogenesis. J Virol 59: 363–368

    PubMed  CAS  Google Scholar 

  • Riviere Y, Ahmed R, Southern PJ, Buchmeier MJ, Dutko F, Oldstone MBA (1985a) The S RNA segment of lymphocytic choriomeningitis virus codes for the nucleoprotein and glycoproteins 1 and 2. J. Virol 53: 966–968

    CAS  Google Scholar 

  • Riviere Y, Ahmed R, Southern P, Oldstone MBA (1985b) Perturbation of differentiated functions during viral infection in vivo: II. Viral reassortants map growth hormone defect at the S RNA of the lymphocytic choriomeningitis virus genome. Virology 142: 175–182

    Article  CAS  Google Scholar 

  • Rivier Y, Ahmed R, Southern PJ, Buchmeier MJ, Oldstone MBA (1985c) Genetic mapping of lymphocytic choriomeningitis virus pathogenicity: virulence in guinea pigs is associated with the L RNA segment. J Virol 55: 704–708

    CAS  Google Scholar 

  • Riviere Y, Southern PJ, Ahmed R, Oldstone MBA (1986) Biology of cloned cytotoxic T lymphocytes specific for lymphocytic choriomeningitis virus: V. Recognition is restricted to gene products encoded by the viral S RNA segment. J Immunol 136: 304–307

    Google Scholar 

  • Romanowski V, Bishop DHL (1985) Conserved sequences and coding of two strains of lymphocytic choriomeningitis virus ( WE and ARM) and Pichinde arenavirus. Virus Res 2: 35–51

    Google Scholar 

  • Rubin DH, Fields BN (1980) Molecular basis of reovirus virulence: role of the M2 gene. J Exp Med 152: 853–868

    Article  PubMed  CAS  Google Scholar 

  • Scholtissek C (1979) Influenza virus genetics. Adv Genet 20: 1–36

    Article  PubMed  CAS  Google Scholar 

  • Scholtissek C, Vallbracht A, Flehmig B, Rott R (1979) Correlation of pathogenicity and gene constellation of influenza A virus. II. Highly neurovirulent recombinants derived from non-virulent or weakly neurovirulent parent virus strains. Virology 95: 492–500

    Google Scholar 

  • Southern PJ, Blount P, Oldstone MBA (1984) Analysis of persistent virus infection by in situ hybridization to whole mouse sections. Nature 312: 555–558

    Article  PubMed  CAS  Google Scholar 

  • Vallbracht A, Scholtissek C, Flehmig B, Gerth HJ (1980) Recombination of influenza A strains with fowl plague virus can change pneumotropism for mice to a generalized infection with involvement of the central nervous system. Virology 107: 452–460

    Article  PubMed  CAS  Google Scholar 

  • Vezza AC, Cash P, Jahrling P, Eddy G, Bishop DHL (1980) Arenavirus recombination: the formation of recombinants between prototype Pichinde and Pichinde Munchique viruses and evidence that arenavirus S RNA codes for N polypeptide. Virology 106: 250–260

    CAS  Google Scholar 

  • Webster RG, Laver WG, Air GM, Schild GS (1982) Genetic and molecular mechanisms of viral pathogenesis: implications for prevention and treatment. Nature 300: 19–23

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Riviere, Y. (1987). Mapping Arenavirus Genes Causing Virulence. In: Oldstone, M.B.A. (eds) Arenaviruses. Current Topics in Microbiology and Immunology, vol 133. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71683-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71683-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71685-0

  • Online ISBN: 978-3-642-71683-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics