Skip to main content

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 13))

Abstract

Lithography plays a central role in the fabrication of electronic devices, and is essential in the preparation of samples for studies of transport in 1-D. The minimum feature size required in the device is important in the choice of lithographic method. Generally for linewidths above 1μm 1inewidth optical lithography is used whilst for smaller dimensions it is necessary to use electron, ion beam or X-ray lithography. The linewidths in current production VLSI circuits range between 1 and 3μm; there are programs in the U.S and the U.K to reduce the linewidth to 0.5μm over the next few years [1]. Single conventional semiconducting electronic devices have been made with gates as small as O.1μm, and some experimental superconducting devices employ features with sizes in the 10–30nm range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.H. Hains: “The Government Role in VLSI”, in VLSI Electronics Microstructure Sciene, Vol.1, ed. by N.G. Einspruch (Academic, New York 1981) Chap.7

    Google Scholar 

  2. S.P. Beaumont, P.G. Bower, T. Tamamura, C.D.W. Wilkinson: Sub 20nm wide metal lines by electron beam exposure of thin PMMA films and lift-off. Appl. Phys. Lett. 38, 436 (1981)

    Google Scholar 

  3. G.R. Brewer: Electron Beam Technology in Microelectronic Fabrication (Academic, New York 19801

    Google Scholar 

  4. J. Kelly, T. Groves, H.P. Kuo: A high-current high speed electron beam litho-graphy column. J. Vac. Sci. Technol. 19, 936–940 (1981)

    Google Scholar 

  5. R.D. Moore, G.A. Caccoma, H.C. Pfeiffer, E.V. Weber, O.C. Woodward: EL-3 a high throughput high resolution lithography tool. J. Vac. Sci. Technol. 19, 950–952 (1981).

    Article  Google Scholar 

  6. M. Fujinami, T. Matsuda, K. Takamoto, H. Yoda, T. Ishiga, N. Saitu, T. Komoda: Variable shaped electron beam lithography system Eb-55. J. Vac. Sci. Technol. 19, 941–945 (1981)

    Google Scholar 

  7. H.G. Craighead, R.E. Howard, L.D. Jackel, P.M. Mankiewich: 10nm linewidth electron beam lithography on GaAs. Appl. Phys. Lett. 42, 38–40 (1983)

    Google Scholar 

  8. A.N. Broers, W.W. Molzen, J.J. Cuomo, N.D. Wittels: Electron beam fabrication of 80 metal structures. Appl. Phys. Lett. 29, 596–598 (1976)

    Google Scholar 

  9. M. Isaacson, A. Murray: In-situ vaporization of very low molecular weight resists using 1/2nm diameter electron beams. J. Vac. Sci. Technol. 19, 1117–1120 (1981)

    Google Scholar 

  10. S.A. Rishton, S.P. Beaumont, C.D.W. Wilkinson: Measurement oT the profile of finely focused electron beams in a scanning electron microscope. J. Phys. E: Sci. Instrum. 17, 296–303 (1984)

    Google Scholar 

  11. M.J. Bowden: Electron irradiation of polymers and its application to resists for electron beam lithography. CRC Critical Reviews, Solid State Sci. 8, 223–264 (1979)

    Article  Google Scholar 

  12. M. Hatzakis: Electron resists for microcircuit and mask production. J. Electrochem. Soc. 116, 1033–1037 (1969); R.A. Harris: Polymethyl methacrylate as an electron sensitive resist. J. Electrochem. Soc. 120, 270–274 (1974)

    Google Scholar 

  13. W.J. Daughton, F.L. Givens: An investigation of the thickness variation of spun-on thin films. J. Electrochem. Soc. 129, 173–179 (1982)

    Google Scholar 

  14. J.M. Shaw, M. Hatzakis: Developer temperature effects on e-beam and optically exposed positive photoresist. J. Electrochem. Soc. 1266, 2026–2031 (1979)

    Google Scholar 

  15. V.K. Sharma, R.A. Pethrick, S. Affrossman: Poly(methyl methacrylate): influence of tacticity on its use as an electron resist. Polymer 23, 1732–1736 (1982)

    Article  CAS  Google Scholar 

  16. J.S. Greeneich: Developer characteristics of poly(methylmethacrylate) electron resist. J. Electrochem. Soc. 122, 970–976 (1975)

    Article  CAS  Google Scholar 

  17. K. Harada, O. Kogure, K. Murase: Poly(phenylmethacrylate-co-methacrylic acid) as a dry-etching durable positive electron resist. IEEE Trans. Electr. Dev. ED-29, 518–524 (1982)

    Google Scholar 

  18. M.E. Mochel, C.J. Humphreys, J.A. Eades, J.M. Mochel, A.M. Petford: Electron beam writing on a 20nm scale in metal-aluminas. Appl. Phys. Lett. 42, 392–394 (1983).

    Google Scholar 

  19. T. Tamamura, K. Sukegawa, S. Sugaward: Resolution limit of negative electron resist exposed on a thin film substrate. J. Electrochem. Soc. 129, 1831–1835 (1982)

    Google Scholar 

  20. J.M. Moran: High resolution resist patterning using reactive ion etching techniques. Solid State Technol. 24, 195–198 (1981)

    Google Scholar 

  21. M. Hatzakis, J. Paraszczak, J. Shaw: “Double Layer Resist Systems for High Reso-lution Lithography”, in Proceedings of Microcircuit Engineering 81 (Lausanne, Switzerland) p.386–396

    Google Scholar 

  22. S.P. Beaumont, T. Tamamura, C.D.W. Wilkinson: “A Two-Layer Resist System for Efficient Lift-Off in Very High Resolution Electron Beam Lithography”, in Proceedings of Microcircuit Engineering ( Delft University Press, Amsterdam 1981 ) p. 381 - 388

    Google Scholar 

  23. C.E. Binnie, S.P. Beaumont, C.D.W. Wilkinson, J.C. White: “The Fabrication of Very Short Gate Length n-Channel MOSFET’s by Direction Electron Beam Exposure”, in Proceedings of Microcircuit Engineering 82 (Grenoble, France)

    Google Scholar 

  24. L.D. Jackel,R.E. Howard, E.L. Hu, D.M. Tennand, P. Grabbe: 50nm silicon struc-tures fabricated with trilevel electron beam resist and reactive-ion etching. Appl. Phys. Lett. 39, 268–270 (1981)

    Google Scholar 

  25. T.H.P. Chang: J. Vac. Sci. Technol. 12, 1271 (1975)

    Google Scholar 

  26. A. Broers: Resolution limits of PMMA resist for exposure with 50kV electrons. J. Electrochem. Soc. 128, 166–170 (1981)

    Google Scholar 

  27. S.A. Rishton, S.P. Beaumont, C.D.W. Wilkinson: “Measurement of the Effect of Secondary Electrons on the Resolution Limit of PMMA”, Proceedings of Microcircuit Engineering 82 (Grenoble, Switzerland)

    Google Scholar 

  28. S.P. Beaumont, B. Sing, C.D.W. Wilkinson: “Very High Resolution Electron Beam Lithography - Thin Films on Solid Substrates”, in Proceedings of the 10th Electron and Ion Beam Sci. Technol. Conference ( Montreal, Canada 1982 )

    Google Scholar 

  29. W.S. Mackie, S.P. Beaumont, C.D.W. Wilkinson, J.S. Robert: “High Resolution Lithography on Thin Active Semiconductor Membranes”, in Proceedings of the 10th Electron and Ion Beam Sci. Technol. Conference ( Montreal, Canada 1982 )

    Google Scholar 

  30. M.P. Lepsetter, W.T. Lynch: “Resolution Limitation for Submicron Technology”, in VLSI Electronics, ed. by N.G. Einspruch ( Academic, New York 1981 )

    Google Scholar 

  31. S.P. Beaumont, P.G. Bower, T. Tanamura, C.D.W. Wilkinson: Replication of Very High Resolution e-Beam Written Masks by Carbon k X-Ray Contact Printing, in Proceedings of Microcircuit Engineering 81 (Lausanne, Switzerland)

    Google Scholar 

  32. H.G. Craighead: lUnm resolution electron beam lithography. J. Appl. Phys. 55, 4430–4435 (1984)

    Google Scholar 

  33. S. Mackie, S.P. Beaumont: High resolution lithography. Solid State Technol. (August 1985)

    Google Scholar 

  34. D.B. Lee. Anisotropic etching of silicon. J. Appl. Phys. 46, 4569–4574 (1969)

    Google Scholar 

  35. S. Semura, H. Saitch, K. Asakawa: Reactive ion etching of GaAs in CC14/O2. J. Appl. Phys. 55, 3131 (1984)

    Google Scholar 

  36. H. Yamada, H. Ito, H. Inaba: Anisotropic reactive ion etching of GaAs and AlGaAs materials for integrated optical device fabrication. J. Vac. Sci. Techol. B3, 884–888 (1985)

    Google Scholar 

  37. M. Kawabe, N. Kanzaki, K. Musuda, S. Namba: Effects of ion etching on the properties of GaAs. Appl. Opt. 17, 2556–2561 (1978)

    Google Scholar 

  38. G.A. Lincon, M.W. Geis, S. Pang, N.N. Efrenow: Large area ion beam assisted etching of GaAs with high etch rates and controlled anisotropy. J. Vac. Sci. Technol. B1, 1043–1046 (1983)

    Google Scholar 

  39. A.P. Webb, C.D.W. Wilkinson: Ion beam etching GaAs for integrated optical applications. Vacuum 34, 159–162 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wilkinson, C.D.W., Beaumont, S.P. (1986). Electron Beam Nanolithography. In: Kelly, M.J., Weisbuch, C. (eds) The Physics and Fabrication of Microstructures and Microdevices. Springer Proceedings in Physics, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71446-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71446-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71448-1

  • Online ISBN: 978-3-642-71446-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics