Skip to main content

Orientation at Night by High-Flying Insects

  • Conference paper
Insect Flight

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

The substance of this paper deals with one striking feature of insect migration — common orientation at night by larger-sized (30–2000 mg), high-flying insects. This phenomenon was unsuspected before it was made dramatically obvious by the fortuitous sensitivity of simple scanning radars to non-random orientation in populations of airborne insects (Schaefer 1969). Since then, common orientation has been widely observed in many radar studies (J. Roffey, personal communication 1972; Riley 1975; Schaefer 1976; Reid et al. 1979; Riley and Reynolds 1979,1983; W.W. Wolf, personal communication 1980; Greenbank et al. 1980; Drake et al. 1981; Drake 1983, 1984) and it appears to be a very common feature of nocturnal migratory flight. All authors agree that orientation occurs in both the presence and absence of moonlight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Able KP, Bingman VP, Kerlinger P, Gergits W (1982) Field studies of avian nocturnal migratory orientation II. Experimental manipulation of orientation in white-throated sparrows (Zonstrichia albicollis)released aloft. Anim Behav 30:768–773.

    Article  Google Scholar 

  • Atlas D, Metcalf JI, Richter JH, Gossard EE (1970) The birth of“CAT”and microscale turbulence. J Atmos Sci 27:903–913.

    Article  Google Scholar 

  • Atlas D, Harris FI, Richter JH (1971) The measurement of point target speeds with incoherent nontracking radar: insect speeds in atmospheric waves. Proc 14th Radar Meteor Conf, Nov 17-20, 1970, Tucson, Arizona. Am Met Soc, Boston, pp 73-78.

    Google Scholar 

  • Baker RR, Mather JG (1982) Magnetic compass sense in the large yellow underwing moth, Noctua pronuba L. Anim Behav 30:543–548.

    Article  Google Scholar 

  • Baker PS, Gewecke M, Cooter RJ (1984) Flight orientation of swarming Locusta migratoria. Physiol Entomol 9:247–252.

    Article  Google Scholar 

  • Batschelet E (1965) Statistical methods for the analysis of problems in animal orientation and certain biological rhythms. Am Inst Biol Sei, Wash DC.

    Google Scholar 

  • Batschelet E (1981) Circular statistics in biology. Academic Press, London.

    Google Scholar 

  • Drake VA (1983) Collective orientation by nocturnally mipating Australian plague locusts, Chortoicetes terminifera (Walker) (Orthoptera:Acrididae): a radar study. Bull Entomol Res 73: 679–692.

    Article  Google Scholar 

  • Drake VA (1984) The vertical distribution of macro-insects migrating in the nocturnal boundary layer: a radar study. Boundary-Layer Meteorol 28:353–374.

    Article  Google Scholar 

  • Drake VA, Helm KF, Readshaw JL, Reid DG (1981) Insect migration across Bass Strait during spring: a radar study. Bull Entomol Res 71:449–466.

    Article  Google Scholar 

  • Farmery MJ (1982) The effect of air temperature on the wingbeat frequency of naturally flying armyworm moths (Spodoptera exempta).Entomol Exp Appl 32:193–194.

    Article  Google Scholar 

  • Gould JL (1980) The case for magnetic sensitivity in birds and bees (such as it is). Am Sci 68:256–267.

    Google Scholar 

  • Greenbank DO, Schaefer GW, Rainey RC (1980) Spruce budworm (Lepidoptera:Tortricidae) moth flight and dispersal: new understanding from canopy observations, radar and aircraft. Mem Entomol Soc Can 110:1–49.

    Article  Google Scholar 

  • Horridge GA (1966a) Optokinetic memory in the crab Carcinus. J Exp Biol 44:233–245.

    PubMed  CAS  Google Scholar 

  • Horridge GA (1966b) Optokinetic memory in the Locust. J Exp Biol 44:255–261.

    PubMed  CAS  Google Scholar 

  • Kennedy JS (1951) The migration of the desert locust (Schistocercagregaria Forsk.) I. The behaviour of swarms. II. A theory of long-range migrations. Philos Trans Roy Soc B Biol Sci 235:163–290.

    Article  Google Scholar 

  • Kennedy JS (1975) Insect dispersal. In: Pimental D (ed) Insects, science and society. Academic Press, New York, pp 103–119.

    Google Scholar 

  • Kien J (1974) Sensory integration in the locust optomotor system I. Behavioural analysis. Vision Res 14:1245–1254.

    Article  PubMed  CAS  Google Scholar 

  • Larkin RP (1980) Transoceanic bird migration: evidence for detection of wind direction. Behav Ecol Sociobiol 6:229–232.

    Article  Google Scholar 

  • Lindauer M, Martin H (1972) Magnetic effects on dancing bees. In: Galler SR, Schmidt-Koenig K, Jacobs GJ, Belleville RE (eds) Animal orientation and navigation. US Gov Print Office, Wash DC, pp 559–567.

    Google Scholar 

  • Mardia KV (1972) Statistics of directional data. Academic Press, London.

    Google Scholar 

  • Martin H, Lindauer M (1977) Der Einfluß des Erdmagnetfeldes auf die Schwereorientierung der Honigbiene. J Comp Physiol 122:145–187.

    Article  Google Scholar 

  • Nisbet ICT (1955) Atmospheric turbulence and bird flight. Br Birds 48:557–559.

    Google Scholar 

  • Noonkester VR (1973) Breaking wave characteristics determined from FM-CW radar observations. Bull Am Meteorol Soc 54:937–941.

    Google Scholar 

  • Reid DG, Wardaugh KG, Roffey J (1979) Radar studies of insect flight at Benalla, Victoria in February 1974. CSIRO Aust Div Entomol Tech paper no 16.

    Google Scholar 

  • Reynolds DR, Riley JR (1979) Radar observations of concentrations of insects above a river in Mali, West Africa. Ecol Entomol 4:161–174.

    Article  Google Scholar 

  • Riley JR (1974) Radar observations of individual desert locusts. Bull Entomol Res 64:19–32.

    Article  Google Scholar 

  • Riley JR (1975) Collective orientation in night-flying insects. Nature 253:113–114.

    Article  Google Scholar 

  • Riley JR (1979) Quantitative analysis of radar returns from insects. In: Vaughn CR, Wolf W, Klassen W (eds) Radar, insect population, ecology, and pest management. NASA Conf Pub 2070, Wallops Island, Virginia, pp 131–158.

    Google Scholar 

  • Riley JR (1985) Radar cross-section of insects. Proc IEEE 73:228–232.

    Article  Google Scholar 

  • Riley JR, Reynolds DR (1979) Radar-based studies of the migratory flight of grasshoppers in the middle Niger area of Mali. Proc R Soc Lond B Biol Sci 204:67–82.

    Article  PubMed  CAS  Google Scholar 

  • Riley JR, Reynolds DR (1983) A long-range migration of grasshoppers observed in the Sahalian Zone of Mali by two radars. J Anim Ecol 52:167–183.

    Article  Google Scholar 

  • Riley JR, Reynolds DR, Farmery MJ (1981) Radar observations of Spodoptera exempta. Kenya, March-April 1979. Mise Rep no 54 Centre of Overseas Pest Research, London.

    Google Scholar 

  • Riley JR, Reynolds DR, Farmery MJ (1983) Observations of the flight behaviour of the armyworm moth Spodoptera exempta, at an emergence site using radar and infra-red optical techniques. Ecol Entomol 8:395–418.

    Article  Google Scholar 

  • Rind FC (1983) A directionally sensitive motion detecting neuron in the brain of a moth. J Exp Biol 102:253–271.

    Google Scholar 

  • Schaefer (1969) Radar studies of locust, moth and butterfly migration in the Sahara. Proc R Entomol Soc Lond Ser A Gen Entomol 34:33, 39,40.

    Google Scholar 

  • Schaefer (1976) Radar observations of insect flight. In: Rainey RC (ed) Insect flight. Symp Roy Entomol Soc no 7. Blackwell, Oxford, pp 157–197.

    Google Scholar 

  • Sotthibandhu S, Baker RR (1979) Celestial orientation by the large yellow underwing moth,Noctua pronuba L. Anim Behav 27:786–800.

    Article  Google Scholar 

  • Thorson J (1966) Small-signal analysis of a visual reflex in the locust I. Input parameters. Kybernetik 3:41–53.

    Article  PubMed  CAS  Google Scholar 

  • Wehner R (1984) Astronavigation in insects. Annu Rev Entomol 29:277–298.

    Article  Google Scholar 

  • Williams CB, Cockbill GF, Gibbs ME, Downes JA (1942) Studies in the migration of lepidoptera. Trans R Entomol Soc Lond 92:101–283.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Riley, J.R., Reynolds, D.R. (1986). Orientation at Night by High-Flying Insects. In: Danthanarayana, W. (eds) Insect Flight. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71155-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71155-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71157-2

  • Online ISBN: 978-3-642-71155-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics