Skip to main content

Human Brain Evolution: II. Embryology and Brain Allometry

  • Conference paper
Intelligence and Evolutionary Biology

Part of the book series: NATO ASI Series ((ASIG,volume 17))

Abstract

The unusually large size of the human brain with respect to the human body as compared to other mammals is a dominating fact in the study of human evolution. No account of the similarities and differences between human and other primate brains is complete without accounting for this quantitative fact. The intuitive correlation between this statistic, encephalization, and the seemingly astronomical gulf between human and non-human intellectual capabilities has led many to argue that this disproportionate size in itself reflects the fundamental adaptation in human brain evolution (Dubois, 1898; 1924; von Bonin, 1952; Jerison, 1973; Van Valen, 1974; Gould, 1975, Passingham, 1975a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong E (1979) A quantitative comparison of the hominoid thalamus, I: Specific sensory relay nuclei. Am J Phys Anthrop 51: 365–82

    Article  PubMed  CAS  Google Scholar 

  • Armstrong E (1980a) A quantitative comparison of the hominoid thalamus, II: Limbic nuclei, anterior principalis and lateralis dorsalis. Am J Phys Anthrop 52: 43–54

    Article  PubMed  CAS  Google Scholar 

  • Armstrong E (1980b) A quantitative comparison of the hominoid thalamus, III: A motor substrate-the ventro-lateral complex. Am J Phys Anthrop 52: 405–19

    Article  Google Scholar 

  • Armstrong E (1982) Mosaic evolution in the primate brain: Differences and similarities in the hominoid thalamus. In E Armstrong and D Falk (eds), Primate Brain Evolution. New York: Plenum Press, pp. 131–161

    Google Scholar 

  • Bauchot R (1982) Brain organization and taxonomic relationships in insectivora and primates. In E Armstrong and D Falk (eds), Primate Brain Evolution. New York: Plenum Press, pp. 163–175

    Google Scholar 

  • Blinkov SM (1950) Cited in Blinkov SM and Glezer II ( 1968 ) The Human Brain in Figures and Tables. New York: Plenum Press

    Google Scholar 

  • Blinkov SM and Glezer II (1968) The Human Brain in Figures and Tables. New York: Plenum Press

    Google Scholar 

  • Blinkov SM and Zvorykin VP (1950) Dimensions of the auditory cortex and the medial geniculate body in man and monkeys. Cited in SM Blinkov and I I Glezer, The Human Brain in Figures and Tables. New York: Plenum Press

    Google Scholar 

  • Bonin G von (1937) Brain-weight and body-weight in mammals. J Gen Psych 16: 379–389

    Article  Google Scholar 

  • Bonin G von (1941) Sidelights on cerebral evolution: brain size of lower vertebrates and degree of cortical folding. J Gen et Psychol 25: 273–282

    Google Scholar 

  • Bonin G von (1952) Notes on cortical evolution. AMA Archives of Neurology and Psychiatry 672: 135–144

    Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren prinzipien dargestellt auf Grund der Zellenbaus. Leipzig: JA Barth

    Google Scholar 

  • Brody H (1955) Organization of the cerebral cortex. III. A study of aging in the human cerebral cortex. J Comp Neurol 102: 511–556

    Article  PubMed  CAS  Google Scholar 

  • Clutton-Brock TH and Harvey PH (1980) Primates, brains and ecology. J Zool Lond 190: 309–323

    Article  Google Scholar 

  • Cowan WM (1973) Neuronal death as a regulative mechanism in the control of cell number in the nervous system. In M Rockstein (ed), Development and Aging in the Nervous System. New York: Academic Press, pp. 119–141

    Google Scholar 

  • Cragg BG (1967) Changes in visual cortex on first exposure of rats to light: Effect on synaptic dimensions. Nature 215: 251–253

    Article  PubMed  CAS  Google Scholar 

  • D’Amato CJ and Hicks SP (1978) Normal development and post-traumatic plasticity of cortico-spinal neurons in rats. Exp Neurol 60: 557–569

    Article  PubMed  Google Scholar 

  • Deacon TW (1984) Connections of the inferior periarcuate area in the brain of Macaca fascicularis: An experimental and comparative investigation of language circuitry and its evolution. Ph.D. Thesis, Harvard University

    Google Scholar 

  • Diamond IT (1979) The subdivisions of neocortex: A proposal to revise the traditional view of sensory, motor and association areas. In JM Sprague and JN Epstein (eds), Prograss in Psychobiology and Physiological Psychology (Vol 8 ). New York: Academic Press

    Google Scholar 

  • Diamond IT (1982) The functional significance of architectonic subdivisions of the cortex: Lashley’s criticism of the traditional view. In J Orbach (ed), Neuropsychology after Lashley. London: Lawrence Earlbaum Assoc.

    Google Scholar 

  • Douglas RJ and Marcellus D (1975) The ascent of man: Deductions based on a multivariate analysis of the brain. Brain Behav Evol 11: 179–213

    Article  PubMed  CAS  Google Scholar 

  • Dubois E (1897) Sur le rapport du poids de l’encephale avec la grandeur du corps chez les mammiferes. Bulletins de la Societe d ’ Anthropologie de Paris 8: 337–376

    Article  Google Scholar 

  • Dubois E (1898) Uber die Abhängigkeit des Hirngewichtes von der Korpergrosse beim Menschen Arch Anthrop 25: 423–441

    Google Scholar 

  • Dubois E (1913) On the relation between the quantity of brain and the size of the body in vertebrates. Verh Kon Akad Wetenschappen Amsterdam 16: 647

    Google Scholar 

  • Dubois E (1923) Phylogenetic and ontogenetic increase of the volume of the brain in the vertebrata. Proc Kon Akad Wetenschappen Amsterdam 25: 235–255

    Google Scholar 

  • Ebbesson SO (1980) The panellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, andneuronal plasticity. Cell Tissue Res 213: 179–212

    PubMed  CAS  Google Scholar 

  • Finlay BL and Slattery K (1983) Local differences in the amount of early cell death in neocortex predict adult local specializations. Science 219: 1349–51

    Article  PubMed  CAS  Google Scholar 

  • Goldman PS (1978) Neuronal plasticity in primate telencephalon: anomalous projections induced by prenatal removal of frontal cortex. Science 202: 768–70

    Article  PubMed  CAS  Google Scholar 

  • Goldman PS and Galkin TW (1978) Prenatal removal of frontal association cortex in the fetal rhesus monkey: anatomical and functional consequences in postnatal life. Brain Res 152: 451–85

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (1981) Development and plasticity of primate frontal association cortex. In O Schmidt, FG Worden, and SG Dennis (eds), The Organization of the Cerebral Cortex. Cambridge: MIT Press

    Google Scholar 

  • Gould SJ (1975) Allometry in primates with emphasis of scaling and the evolution of the brain. Contributions to Primatology 5: 244–292

    PubMed  CAS  Google Scholar 

  • Grand TI (1977) Body weight its relation to tissue composition, segment distribution, and motor function: Part 1 interspecific comparision. Am J Phys Anthrop 47: 211–241

    Article  PubMed  CAS  Google Scholar 

  • Harvey P, Clutton-Brock TH, and Mace GM (1980) Brain size and ecology in small mammals and primates. Proc Natl Acad Sci 77: 4387–4389

    Article  PubMed  CAS  Google Scholar 

  • Hofman MA (1982a) Encephalization in mammals in relation to size of the cerebral cortex. Brain Behav Evol 20: 84–96.

    Article  PubMed  CAS  Google Scholar 

  • Hofman MA (1982b) A two-component theory of encephalization in mammals. J Theor Biol 99: 571–584

    Article  PubMed  CAS  Google Scholar 

  • Hofman MA (1983a) Energy metabolism, brain size and longevity in mammals. Q Rev Biol 58: 495–512

    Article  PubMed  CAS  Google Scholar 

  • Hofman MA (1983b) Evolution of brain size in neonatal and adult placental mammals: a theoretical approach. J Theor Biol 105: 317–332

    Article  PubMed  CAS  Google Scholar 

  • Hofman MA (1984) Energy metabolism and relative brain size in human neonates from single and multiple gestations. An allometric study. Biol Neonate 45: 157–164

    Article  PubMed  CAS  Google Scholar 

  • Hofman MA (1985) Neuronal correlates of corticalization in mammals: a theory. J Theor Biol 112: 77–95

    Article  PubMed  CAS  Google Scholar 

  • Holloway RL (1976) Paleoneurological evidence for language origins. In SR Harnad, HD Steklis and J Lancaster (eds), Origins and Evolution of Language and Speech, Annals N Y Acad Sei 280: 330–348

    Google Scholar 

  • Holloway RL (1979) Brain size, allometry, and reorganization: Toward a synthesis. In M Hahn, C Jensen, and B Dudek (eds), Development and Evolution of Brain Size. New York: Academic Press, pp. 59–88

    Google Scholar 

  • Holloway RL (1983) Cerebral brain endocast pattern of Australopithecus afarensis. Nature 303: 420–422

    Article  PubMed  CAS  Google Scholar 

  • Holloway RL and Post DG (1982) The relativity of relative brain measures and hominid mosaic evolution. In E Armstrong and D Falk (eds), Primate Brain Evolution. New York: Plenum

    Google Scholar 

  • Hollyday M and Hamburger V (1976) Reduction of the naturally occuring motor neuron loss by enlargement of the periphery. J Comp Neurol 170: 311–320

    Article  PubMed  CAS  Google Scholar 

  • Huxley J (1932) Problems of Relative Growth. London: Methuen

    Google Scholar 

  • Jacobson M (1978) Developmental Neurobiology ( Second edition ). New York: Holt, Rhinehart, and Winston

    Google Scholar 

  • Jerison HJ (1973) Evolution of the Brain and Intelligence. New York: Academic Press

    Google Scholar 

  • Jerison HJ (1977) The theory of encephalization. Ann NY Acad Sci 299: 146–160

    Article  PubMed  CAS  Google Scholar 

  • Jerison HJ (1979) The evolution of diversity in brain size. In MHahn, B Dudek, and C Jensen (eds), Development and Evolution of Brain Size: Behavioral Implications. New York: Academic Press, pp. 29–57

    Google Scholar 

  • Jerison HJ (1982) Allometry, brain size, cortical surface, and convolutedness. In E Armstrong and D Falk (eds), Primate Brain Evolution. New York: Plenum, pp. 77–84

    Google Scholar 

  • Katz MJ and Lasek RJ (1978) Evolution of the nervous system: Role of ontogenetic mechanisms in evolution of matching populations. Proc Nat Acad Sci USA 75: 1349–52

    Article  PubMed  CAS  Google Scholar 

  • Kelahan AM, Ray RH, Carson LV, and Doetsch GS (1980) Functional organization of racoon somatosensory cortex: Effects of early peripheral injury. Soc Neurosci Abstracts 10

    Google Scholar 

  • Kononova EP (1962) The Frontal Region of the Brain. Leningrad. Cited in SM Blinkov and II Glezer, The Human Brain in Figures and Tables. New York: Plenum (1968)

    Google Scholar 

  • Koppel H and Innocenti GM (1983) Is there a genuine exuberancy of callosal projections in development? A quantitative electron- microscopic study in the cat. Neurosci Lett 41: 33–40

    Article  PubMed  CAS  Google Scholar 

  • Lu SM, Schmechel DE, and Lin C-S (1983) Transplantation between neonatal visual and somatosensory cortex in pigmented rats. Soc Neurosci Abstracts 9: 112–5

    Google Scholar 

  • Mace GM, Harvey P, and Clutton-Brock TH (1981) Brain size and ecology in small mammals. J Zool Lond 193: 333–354

    Article  Google Scholar 

  • Martin RD (1983) Human brain evolution in an ecological context. Fifty- second James Arthur Lecture on the Evolution of the Human Brain. American Mus Nat Hist, New York

    Google Scholar 

  • Merzenich MM, Kaas JH, Nelson RJ, Wall J, Sur M, and Felleman DJ (1980) Progressive topographic reorganization of representations of the hand within areas 3b and 1 of monkeys following median nerve section. Soc Neurosci Abstracts 10: 222. 1

    Google Scholar 

  • Ojemann GA (1979) Individual variability in cortical localization of language. J Neurosurg 50: 164 - 9

    Article  PubMed  CAS  Google Scholar 

  • Ojemann GA (1983) Brain organization for language from the perspective of electrical stimulation mapping. Behav Brain Sciences 2: 189–230

    Article  Google Scholar 

  • O’Leary D, Stanfield B, and Cowan W (1981) Evidence that the early postnatal restriction of cells of origin of the callosal projection is due to the elimination of axonal collaterals rather than to the death of neurons. Developmental Brain Res 1: 607–17

    Article  Google Scholar 

  • Passingham RE (1973) Anatomical differences between the cortex of man and other primates. Brain Behav Evol 7: 337–359

    Article  PubMed  CAS  Google Scholar 

  • Passingham RE (1975a) The brain and intelligence. Brain Behav Evol 11: 1–15

    Article  PubMed  CAS  Google Scholar 

  • Passingham RE (1975b) Changes in the size and organization of the brain in man and his ancestors. Brain Behav Evol 11: 73–90

    Article  PubMed  CAS  Google Scholar 

  • Passingham RE (1979a) Brain size and intelligence in man. Brain Behav Evol 16: 253–270

    Article  PubMed  CAS  Google Scholar 

  • Passingham RE (1979b) Specialization in the language areas. In HD Steklis and MJ Raliegh (eds), Neurobiology of Social Communication in Primates. New York: Academic Press

    Google Scholar 

  • Passingham RE and Ettlinger G (1973) A comparison of cortical functions in man and other primates. Brain Behav Evol 7: 337–359

    Article  PubMed  CAS  Google Scholar 

  • Perry VH and Cowey A (1982) A sensitive period for ganglionic cell degeneration and the formation of abberant retino-fugal connections following tectal lesions in rats. Neuroscience 7: 583–594

    Article  PubMed  CAS  Google Scholar 

  • Rakic P, Bourgeois J-P, Eckenhoff MF, Zecevic N, and Goldman-Rakic PS (1986) Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232: 232–234

    Article  PubMed  CAS  Google Scholar 

  • Rockel AJ, Hiorns RW, and Powell TPS (1980) The basic uniformity in structure of the neocortex. Brain 103: 221

    Article  PubMed  CAS  Google Scholar 

  • Rubel EW, Smith DJ, and Miller LC (1976) Organization and development of brainstem auditory nuclei of the chicken: Ontogeny of n. magnocellularis and n. laminaris. J Comp Neurol 166: 469–490

    Google Scholar 

  • Sacher GA (1970) Allometric and factorial analysis of brain structure in insectivores and primates. In CR Novack and W Montagna (eds), The Primate Brain: Advances in Primatology. New York: Appleton, pp. 245–287

    Google Scholar 

  • Schultz AH (1940) The size of the orbit and of the eye in primates. Am J Phys Anthro 26: 389–408

    Article  Google Scholar 

  • Shariff GA (1953) Cell counts in the primate cerebral cortex. J Comp Neurol 98: 381–400

    Article  PubMed  CAS  Google Scholar 

  • Sohal GS (1976) An experimental study of cell death in the developing trochlear nucleus. Exp Neurol 51: 684–698

    Article  PubMed  CAS  Google Scholar 

  • Stephan H and Andy OJ (1969) Quantitative comparative neuroanatomy of primates: an attempt at a phylogenetic interpretation. In Comparative and Evolutionary Aspects of the Vertebrate Central Nervous System, Annals NY Acad Sei 167: 370–387

    Google Scholar 

  • Stephan H, Frahm H, and Baron G (1981) New and revised data on volumes of brain structures in insectivores and primates. Folia Primatol 35: 1–29

    Article  PubMed  CAS  Google Scholar 

  • Tobias PV (1980) The anatomy of hominization. In EA Vidreo (ed), Progress in Clinical and Biological Research, Vol. 59B. Advances in the Morphology of Cells and Tissues. New York: Alan R. Liss, pp. 101–110

    Google Scholar 

  • Tobias PV (1981) The emergence of man in Africa and beyond. Philos Trans R Soc Lond B Biol Sci 292: 43–56

    Article  Google Scholar 

  • Tower DB (1954) Structural and functional organization of the mammalian cerebral cortex. The correlation of neurone density with brain size. Cortical density in the finwhale with a note on the cortical neurone density in the Indian elephant. J Comp Neurol 101: 19–53

    Article  PubMed  CAS  Google Scholar 

  • Zihlman AL (1979) Differences in body weight composition of Pygmy Chimpanzees Pan paniscus and common chimpanzees Pan troglodytes. Am J Phys Anthro 50: 496

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deacon, T.W. (1988). Human Brain Evolution: II. Embryology and Brain Allometry. In: Jerison, H.J., Jerison, I. (eds) Intelligence and Evolutionary Biology. NATO ASI Series, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70877-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70877-0_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70879-4

  • Online ISBN: 978-3-642-70877-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics