Skip to main content

Permeable Base Transistor

  • Conference paper
Picosecond Electronics and Optoelectronics

Part of the book series: Springer Series in Electrophysics ((SSEP,volume 21))

  • 216 Accesses

Abstract

Many important applications exist for a three-terminal device capable of amplifying and generating power in the EHF frequency range and of operating at high speeds in a logic circuit. Although sufficiently fast two-terminal devices are presently available, three-terminal devices provide greater fan-out capability in a logic circuit and greater isolation of input and output signals in an analog circuit. The permeable base transistor(PBT) was conceived at Lincoln Laboratory in 1979 [1,2] as a device capable of being used in these applications [3,4,5]. It is presently one of several devices being developed for high frequency and high speed applications. Other devices include the conventional field-effect transistor (FET) [6,7], the high electron mobility transistor (HEMT) [8,9], and the heterojunction bipolar transistor (HJBT) [10].

This work was sponsored by the Defense Advanced Research Projects Agency and the Department of the Air Force.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. O. Bozler, G. D. Alley, R. A. Murphy, D. C. Flanders, and W. T. Lindley: in Proc. 7th Bien. Cornell Conf. on Active Microwave Devices, 33 (1979)

    Google Scholar 

  2. G. D. Alley, C. O. Bozler, R. A. Murphy, W. T. Lindley: in Proc. 7th Bien. Conf. on Active Microwave Devices, 43 (1979)

    Google Scholar 

  3. C. O. Bozler, G. D. Alley: IEEE Trans. Electron Devices ED-27, 1128 (1980)

    Article  Google Scholar 

  4. C. O. Bozler, G. D. Alley: Proc. IEEE 79, 46 (1982)

    Article  Google Scholar 

  5. G. D. Alley: IEEE Trans. Electron Devices ED-30, 52 (1980).

    Google Scholar 

  6. E. T. Watkins, H. Yamasaki, J. M. Schellenberg: in ISSCC Tech. Dig., 198 (1982)

    Google Scholar 

  7. E. T. Watkins, J. M. Schellenberg, L. H. Hackett, H. Yamasaki, M. Feng: in IEEE Int. Microwave Symp. Dig., 145 (1983)

    Google Scholar 

  8. L. Camnitz, P. Tasker, H. Lee, D. ver Merwe, L. Eastman: in IEDM Tech. Dig., 360 (1984)

    Google Scholar 

  9. U. K. Mishra, S. C. Palmateer, P. C. Chao, P. M. Smith, J. C. M. Hwang: IEEE Electron Device Lett. EDL-6, 142 (1985)

    Article  Google Scholar 

  10. P. M. Asbeck, D. L. Miller, R. J. Anderson, R. N. Deming, R. T. Chen, C. A. Liechti, F. H. Eisen: in GaAs IC Symposium Tech. Dig., 133 (1984)

    Google Scholar 

  11. G. D. Vendel in: Design of Amplifiers and Oscillators by the S-parameter Method (Wiley-Interscience, John Wiley and Sons, New York 1982]

    Google Scholar 

  12. R. Spence: Linear Active Networks (Wiley-Interscience, John Wiley and Sons, London 1970)

    Google Scholar 

  13. E. O. Johnson, A. Rose: Proc. IRE, 407 (1959)

    Google Scholar 

  14. Y. Awano, K. Tomizawa, N. Hashizume: to be published in GaAs and Related Compounds (Inst. Phys., London, 1984)

    Google Scholar 

  15. D. C. Flanders: J. Vac. Sci. Technol. 6, 1615 (1979)

    Article  Google Scholar 

  16. C. O. Bozler, M. A. Hollis, S. W. Pang, R. W. McClelland, K. B. Nichols: submitted for publication

    Google Scholar 

  17. G. D. Alley, et al.: IEEE Trans. Electron Devices ED-29, 1708 (1982)

    Article  Google Scholar 

  18. M. A. Hollis, K. B. Nichols, C. O. Bozler, A. R. Calawa, M. J. Manfra: in Prog. 1984 Electronic Materials Conf. (1984).

    Google Scholar 

  19. K. B. Nichols, R. P. Gale, M. A. Hollis, G. A. Lincoln, C. O. Bozler: IEEE Trans. Electron Devices ED-31, 1969 (1984).

    Article  Google Scholar 

  20. C. O. Bozler, M. A. Hollis, K. B. Nichols, S. Rabe, A. Vera, C. L. Chen: submitted for publication

    Google Scholar 

  21. A. R. Calawa, M. J. Manfra, G. A. Lincoln: presented at Int. Conf. on Molecular Beam Epitaxy, paper Q-3, 1984

    Google Scholar 

  22. D. D. Rathman, B. A. Vojak, D. C. Flanders, N. P. Economou: in Ext. Abs. 16th Conf. on Solid State Device and Materials, 305 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Murphy, R.A. (1985). Permeable Base Transistor. In: Mourou, G.A., Bloom, D.M., Lee, CH. (eds) Picosecond Electronics and Optoelectronics. Springer Series in Electrophysics, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70780-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70780-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70782-7

  • Online ISBN: 978-3-642-70780-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics