Skip to main content

Structure and Functions of Oyster Hemocytes

  • Conference paper
Immunity in Invertebrates

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

There are a number of characteristics which should be considered in a definitive classification of hemocytes [40], but the initial criterion is most often morphology. Although no general agreement on the number of different cell types in oyster hemolymph has been reached, most investigators divide the hemocytes into at least two major classifications: the granular and the agranular [7,40]. There are apparent differences in the roles that granular and agranular cells play in any organism, and those roles are not necessarily the same for each species. The granular hemocytes are generally larger than the agranular cells and contain walled vesicles (granules) in the cytoplasm. Using light microscopy, investigators have also been able to distinguish acidophilic and basophilic granulocytes [7], stem cells [2], slightly granular cells [40], and differences based on nuclear size [28]. But even with ultrastructural investigation, these studies of oyster hemocytes have not led to a generally accepted scheme of nomenclature and classification. Rather, they have emphasized differences between oyster species and raised conflicting evidence within species. For example, there are major disagreements between invertigations examining the ultrastructure of Crassostrea virginica agranular hemocytes [27,34,48]. Also, the easily distinguishable C. virginia granulocytes was first beleived to be two cell types [30] due to its altered morphology upon degranulation [7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acton RT, Evans EE (1968) Bacteriophage clearance in the oyster ( Crassostrea virginica ). J Bacteriol 95: 1260–1266

    PubMed  CAS  Google Scholar 

  2. Auffret M (1984) Contribution of hematology to the knowledge of cellular immunity in bivalve molluscs (abstract). Invertebr Immunol Conf, Int Soc Dev Comp Immunol, Montpellier, France. Dev Comp Immunol (in press)

    Google Scholar 

  3. Bachere E, Comps M (1984) In: Pichot et al. 1980. Experimental infection of the flat oyster Ostrea edulis by the protistan Bonamia ostreae (abstract) 1st Int Colloq Pathol Marine Aquac, Montpellier, France, pp 37–38

    Google Scholar 

  4. Bang FB (1961) Reaction to injury in the oyster (Crassostrea virginica). Biol Bull (Woods Hole) 121: 57–68

    Article  Google Scholar 

  5. Bayne CJ (1983) Molluscan immunobiology. In: Salleuddin ASM, Wilbur KM (eds) The Mollusca. Physiology, Part 2, Vol 4. Academic Press, New York, pp 407–486

    Google Scholar 

  6. Bretscher MS (1984) Endocytosis: relation to capping and cell locomotion. Science 224: 681–686

    Article  PubMed  CAS  Google Scholar 

  7. Cheng TC (1975) Functional morphology and biochemistry of molluscan phagocytes. Ann NY Acad Sci 266: 343–379

    Article  PubMed  CAS  Google Scholar 

  8. Cheng TC (1976) Aspects of substrate utilization and energy requirement during molluscan phagocytosis. J Invertebr Pathol 27: 263–268

    Article  PubMed  CAS  Google Scholar 

  9. Cheng TC (1977) Biochemical and ultrastructural evidence for the double role of phagocytosis in molluscs: defence and nutrition. In: Bulla LA Jr, Cheng TC (eds) Comparative Pathobiology, Vol 3. Invertebrate Immune Responses. Plenum, London, pp 21–30

    Google Scholar 

  10. Cheng TC (1983) The role of lysosomes in molluscan inflammation. Am Zool 23: 129–144

    CAS  Google Scholar 

  11. Cheng TC, Cali A (1974) An electron microscope study of the fate of bacteria phagocytized by granulocytes of Crassostrea virginica. Contemp Top Immunobiol 4: 25–35

    Google Scholar 

  12. Cheng TC, Howland KH (1979) Chemotactic attraction between hemocytes of the oyster Crassostrea virginica, and bacteria. J Invertebr Pathol 33: 204–210

    Article  Google Scholar 

  13. Cheng TC, Howland KH (1982) Effects of colchicine and cytochalasin B on chemotaxis of oyster ( Crassostrea virginica) hemocytes. J Invertebr Pathol 40: 150–152

    Google Scholar 

  14. Cheng TC Huang JW, Karadogan H, Renwrantz LR, Yoshino TP (1980) Separation of oyster hemocytes by density gradient centrifugation and identification of their surface receptors. J Invertebr Pathol 36: 35–40

    Article  CAS  Google Scholar 

  15. Cheng TC, Rifkin E (1970) Cellular reactions in marine molluscs in response to helminth parasitism. In: Snieszko SF (ed) A Symposium on Diseases of Fishes and Shellfishes. Am Fish Soc (Wash DC), pp 443–496

    Google Scholar 

  16. Cheng TC, Rodrick GE (1975) Lysosomal and other enzymes in the hemolymph of Crassostrea virginica and Mercenaria mercenaria. Comp Biochem Physiol 52B: 443–447

    Article  CAS  Google Scholar 

  17. Cheng TC, Rodrick GE, Foley DA, Koehler SA (1975) Release of lysozyme from hemolymph cells of Mercenaria mercenaria during phagocytosis. J Invertebr Pathol 25: 261–265

    Article  PubMed  CAS  Google Scholar 

  18. Cheng TC, Rudo BM (1976) Distribution of glycogen resulting from degradation of 14C-la-belled bacteria in the American oyster, Crassostrea virginica. J Invertebr Pathol 27: 259–262

    Google Scholar 

  19. Dundee DS (1953) Formed elements of the blood of certain fresh-water mussels. Trans Am Microsc Soc 72: 254–264

    Article  Google Scholar 

  20. Eble AF, Tripp MR (1969) Oyster leucocytes in tissue culture: a functional study. Proc Natl Shellfish Assoc 59: 5

    Google Scholar 

  21. Farley CA (1968) Minchinia nelsoni (Haplosporidia) disease syndrome in the American oy-ster Crassostrea virginica. J Protozool 15: 585–599

    PubMed  CAS  Google Scholar 

  22. Feng JS (1966) The fate of a virus, Staphylococcus aureus Phage 80, injected into the oyster, Crassostrea virginica. J Invertebr Pathol 8: 496–504

    Article  Google Scholar 

  23. Feng SY (1965a) Pinocytosis of proteins by oyster leucocytes. Biol Bull (Woods Hole) 129: 95–105

    Article  CAS  Google Scholar 

  24. Feng SY (1965b) Heart rate and leucocyte circulation in Crassostrea virginica (Gmelin). Biol Bull (Woods Hole) 128: 198–210

    Article  Google Scholar 

  25. Feng SY (1966) Experimental bacterial infections in the oyster Crassostrea virginica. J Invertebr Pathol 8: 505–511

    Article  Google Scholar 

  26. Feng SY, Feng JS (1974) The effect of temperature on cellular reactions of Crassostrea virginica to the injection of avian erythrocytes. J Invertebr Pathol 23: 22–37

    Article  PubMed  CAS  Google Scholar 

  27. Feng SY, Feng JS, Burke CN, Khairallah LH (1971) Light and electron microscopy of the leucocytes of Crassostrea virginica ( Mollusca: Pelecypoda). Z Zellforsch Mikrosk Anat 120: 222–245

    Google Scholar 

  28. Feng SY, Feng JS, Yamasu T (1977) Roles of Mytilus coruscus and Crassostrea gigas blood cells in defense and nutrition. In: Bulla LA Jr, Cheng TC (eds) Comparative Pathobiology, Vol 3. Invertebrate Immune Responses. Plenum, London, pp 31 - 67

    Google Scholar 

  29. Fisher WS (1984) Osmotic and ionic effects on hemocyte function in the American oyster (abstract). Invertebr Immunol Conf, Int Soc Dev Comp Immunol, Montpellier, France, p. 70. Dev Comp Immunol (in press)

    Google Scholar 

  30. Foley DA, Cheng TC (1972) Interaction of molluscs and foreign substances: the morphology and behavior of hemolymph cells of the American oyster, Crassostrea virginica, in vitro. J Invertebr Pathol 19: 383–394

    Google Scholar 

  31. Foley DA, Cheng TC (1975) A quantitative study of phagocytosis by hemolymph cells of the Pelecypods Crassostrea virginica and Mercenaria mercenaria. J Invertebr Pathol 25: 189–197

    Article  PubMed  CAS  Google Scholar 

  32. Foley DA, Cheng TC (1977) Degranulation and other changes of molluscan granulocytes associated with phagocytosis. J Invertebr Pathol 29: 321–325

    Article  PubMed  CAS  Google Scholar 

  33. Fries CR, Tripp MR (1970) Uptake of viral particles by oyster leucocytes in vitro. J Invertebr Pathol 15: 136–137

    Article  PubMed  CAS  Google Scholar 

  34. Hawkins WE, Howse HD (1982) Ultrastructure of cardiac hemocytes and related cells in the oyster Crassostrea virginica. Trans Am Microsc Soc 101 (3): 241–252

    Article  Google Scholar 

  35. Howland KH, Cheng TC (1982) Identification of bacterial chemoattractants for oyster ( Crassostrea virginica) hemocytes. J Invertebr Pathol 39: 123–132

    Google Scholar 

  36. Kanungo K (1982) In vitro studies on the effects of cell-free coelomic fluid, calcium, and/or magnesium on clumping of coelomocytes of the sea stei Asteria forbesi (Echinodermata: Asteroidea). Biol Bull (Woods Hole) 163: 438–452

    Article  CAS  Google Scholar 

  37. Kenney DM, Belamarich FA, Shepro D (1972) Aggregation of horseshoe crab ( Limulus polyphemus) amebocytes and reversible inhibition of aggregation by EDTA. Biol Bull (Woods Hole) 143: 548–567

    Google Scholar 

  38. Mackin JG, Owen HM, Collier A (1950) Preliminary note on the occurence of a new protistan parasite, Dermocystidium marinum nasp. in Crassostrea virginica ( Gmelin ). Science 111: 328–329

    Google Scholar 

  39. McDade JE, Tripp MR (1967) Lysozyme in the hemolymph of the oyster, Crassostrea virginica. J Invertebr Pathol 9: 531–535

    Google Scholar 

  40. Narain AS (1973) The amoebocytes of lamellibranch molluscs, with special reference to the circulating amoebocytes. Malacol Rev 6: 1–12

    Google Scholar 

  41. Noble PB (1970) Coelomocyte aggregation in Cucumaria frondosa: Effect of ethylenediamin-etetraacetate, adenosine, and adenosine nucleotides. Biol Bull (Woods Hole) 139: 549–556

    Article  CAS  Google Scholar 

  42. Pauley GB, Sparks AK (1965) Preliminary observations on the acute inflammatory reaction in the Pacific oyster, Crassostrea gigas ( Thunberg ). J Invertebr Pathol 7: 248–256

    Google Scholar 

  43. Perkins FO, Menzel RW (1967) Ultrastructure of sporulation in the oyster pathogen Dermo-cystidium marinum. J Invertebr Pathol 9: 205–229

    Article  Google Scholar 

  44. Pichot Y, Comps M, Tige G, Grizel H, Rabouin MA (1979) Reserches sur Bonamia ostreae gen. n., sp. n., parasite nouveau de l’huitre plate Ostrea edulis ( L). Rev Trav Inst Peches Marit 43: 131–140

    Google Scholar 

  45. Pierce SK (1982) Invertebrate cell volume control mechanisms: A coordinated use of intracellular amino acids and inorganic ions as osmotic solute. Biol Bull (Woods Hole) 163: 405–419

    Article  CAS  Google Scholar 

  46. Pierce SK, Amende LM (1981) Control mechanisms of amino acid-mediated cell volume regulation in salinity-stressed molluscs. J Exp Zool 215: 247–257

    Article  CAS  Google Scholar 

  47. Renwrantz LR, Yoshino TP, Cheng TC, Auld KR (1979) Size determination of hemocytes from the American oyster, Crassostrea virginica, and the description of a phagocytosis me-chanism. Jahrb Zool Abt Physiol Zoomorph 83: 1–12

    Google Scholar 

  48. Rifkin E, Cheng TC, Hohl HR (1969) An electron microscope study of the constituents of encapsulating cysts in Crassostrea virginica formed in response to Tyolcephalum metacesto- des. J Invertebr Pathol 14: 211–226

    Article  PubMed  CAS  Google Scholar 

  49. Ruddell CL (1971a) The fine structure of oyster agranular amebocytes from regenerating mantle wounds in the Pacific oyster, Crassostrea gigas. J Invertebr Pathol 18: 260–268

    Article  PubMed  CAS  Google Scholar 

  50. Ruddell CL (1971b) The fine structure of the granular amebocytes of the Pacific oyster, Crassostrea gigas. J Invertebr Pathol 18: 269–275

    Article  PubMed  CAS  Google Scholar 

  51. Sparks AK, Pauley GB (1964) Studies of the normal post-mortem changes in the oyster, Crassostrea gigas ( Thunberg ). J Insect Pathol 6: 78–101

    Google Scholar 

  52. Stauber LA (1950) The fate of India ink injected intracardially into the oyster, Ostrea virginica (Gmelin). Biol Bull (Woods Hole) 98: 227–241

    Article  CAS  Google Scholar 

  53. Stauber LA (1961) Immunity of invertebrates, with special reference to the oyster. Proc Natl Shellfish Assoc 50: 7–20

    Google Scholar 

  54. Takatsuki S (1934) On the nature and functions of the amoebocytes of Ostrea edulis. Q J Microsc Sci 76: 379–431

    Google Scholar 

  55. Tripp MR (1958) Disposal by the oyster of intracardially injected red blood cells of vertebrates. Proc Natl Shellfish Assoc 48: 143–147

    Google Scholar 

  56. Tripp MR (1960) Mechanisms of removal of infected microorganisms from the American oyster, Crassostrea virginica (Gmelin). Biol Bull (Woods Hole) 119: 210–223

    Article  Google Scholar 

  57. Tripp MR (1966) Hemagglutinin in the blood of the oyster Crassostrea virginica. J Invertebr Pathol 8: 478–484

    Article  PubMed  CAS  Google Scholar 

  58. Tripp MR, Kent VE (1967) Studies on oyster cellular immunity. In Vitro 3: 129–135

    Google Scholar 

  59. Vasta GR, Sullivan JT, Cheng TC, Marchalonis JJ, Warr GW (1982) A cell membrane-associated lectin of the oyster hemocyte. J Invertebr Pathol 40: 367–377

    Article  CAS  Google Scholar 

  60. Wagge LE (1951) The activity of amebocytes and of alkaline phosphatases during the regeneration of the shell in the snail Helix aspersa. Q J Microsc Sci 92: 3077–3210

    Google Scholar 

  61. Watanabe N (1983) Shell repair. In: Wilbur KM (ed) The Mollusca, Vol 4. Physiology, Part 1. Academic Press, New York, pp 289–316

    Google Scholar 

  62. Yonge CM (1946) Digestion of animals by lamellibranchs. Nature 157: 729

    Article  Google Scholar 

  63. Yoshino TP, Cheng TC (1982) Experimentally induced elevation of aminopeptidase activity in hemolymph cells of the American oyster, Crassostrea virginica. J Invertebr Pathol 27: 267–270

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fisher, W.S. (1986). Structure and Functions of Oyster Hemocytes. In: Brehélin, M. (eds) Immunity in Invertebrates. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70768-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70768-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70770-4

  • Online ISBN: 978-3-642-70768-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics