Skip to main content

The Molecular Biology of Acetylcholine Receptors from the Vertebrate Peripheral and Central Nervous Systems

  • Conference paper
Molecular Aspects of Neurobiology

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Nicotinic acetylcholine receptors (AChR) mediate chemical communication at synapses in many parts of the vertebrate nervous system, including neuromuscular junctions, autonomic ganglia, and certain sites in the brain. This occurs through the interaction of neuronally-released acetylcholine (ACh) with recognition sites on the AChR in the postsynaptic membrane. ACh binding activates a gated cation channel and results in a transient change in the permeability of the membrane, which can be measured as a depolarisation of the transmembrane electrical potential. This has been directly demonstrated for the best characterised AChR, that from the electroplax of Torpedo sp. or Electrophorus sp. The Torpedo electric organ is a rich source of AChR protein and mRNA, and studies on this model system have contributed crucially to our understanding of AChR structure and function. An extensive review literature is available (Karlin 1980; Conti-Tronconi and Raftery 1982;Kistler et al. 1982; Dolly and Barnard 1984; Popot and Changeux 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson S, Kingston IB (1983) Isolation of a genomic clone for bovine pancreatic trypsin inhibitor by using a unique-sequence synthetic DNA probe. Proc Natl Acad Sci USA 80: 6838–6842

    Article  PubMed  CAS  Google Scholar 

  • Ballivet M, Nef P, Stalder R, Fulpius B (1983) Genomic sequences encoding the a-subunit of acetylcholine receptor are conserved during evolution. Cold Spring Harbor Symp Quant Biol 48: 83–88

    PubMed  CAS  Google Scholar 

  • Beeson DMW, Barnard EA, Conti-Tronconi B, Dunn SMJ, Anderton T, Wilderspin AF, Bell LD, Jackson JF (1986) The chicken muscle acetylcholine receptor: subunit structure and the a-subunit cDNA cloning. J Biol Chem (in press)

    Google Scholar 

  • Betz H, Pfeiffer F (1984) Monoclonal antibodies against the a-bungaro toxin-binding protein of chick optic lobe. J Neurosci 4: 2095–2105

    PubMed  CAS  Google Scholar 

  • Conti-Tronconi BM, Raftery MA (1982) The nicotinic cholinergic receptor: correlation of molecular structure with functional properties. Annu Rev Biochem 51: 491–530

    Article  PubMed  CAS  Google Scholar 

  • Conti-Tronconi BM, Dunn SMJ, Barnard EA, Dolly JO, Lai FA, Ray N, Raftery MA (1985) Brain and muscle acetylcholine receptors are different but homologous proteins. Proc Natl Acad Sci USA 82: 5208–5212

    Article  PubMed  CAS  Google Scholar 

  • Dolly JO, Barnard EA (1984) Nicotinic acetylcholine receptors: an overview. Biochem Pharmacol 33: 841–858

    Article  PubMed  CAS  Google Scholar 

  • Greenberg ME, Ziff EB (1984) Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature 311: 433–437

    Article  PubMed  CAS  Google Scholar 

  • Huynh TV, Young RA, Davis RM (1985) Constructing and screening cDNA libraries in XgtlO and Xgtll. In: Glover D (ed) DNA cloning: a practical approach, vol I. IRL, Oxford, p 49

    Google Scholar 

  • Jacob MH, Berg DK (1983) The ultrastructural localization of a-bungarotoxin binding sites in relation to synapses on chick ciliary ganglion neurons. J Neurosci 3: 260–271

    PubMed  CAS  Google Scholar 

  • Jayne M, de la Salle H, Schamber F, Balland A, Kohli V, Findeli A, Tolstoshev P, Lecocq (1983) Isolation of a human anti-haemophilic factor IX cDNA clone using a unique 52 base synthetic oligonucleotide probe deduced from the amino acid sequence of bovine factor IX. Nuclei Acids Res 11: 2325–2335

    Article  Google Scholar 

  • Karlin A (1980) Molecular properties of nicotinic acetylcholine receptors. In: Cotman CW, Poste G, Nicolson GL (eds) The cell surface and neuronal function. Elsevier/North Holland, Amsterdam, p 191

    Google Scholar 

  • Kistler J, Stroud RM, Klymkowsky MW, Lalancette RA (1982) Structure and function of an acetylcholine receptor. Biophys J 38: 371–383

    Article  Google Scholar 

  • Marshall LM (1981) Synaptic localization of a-bungarotoxin binding which blocks nicotinic transmission at frog sympathetic neurons. Proc Natl Acad Sci USA 78: 1948–1952

    Article  PubMed  CAS  Google Scholar 

  • Mehraban F, Kemshead JT, Dolly JO (1984) Properties of monoclonal antibodies to nicotinic acetylcholine receptors from chick muscle. Eur J Biochem 138: 53–61

    Article  PubMed  CAS  Google Scholar 

  • Merlie JP, Isenberg KE, Russell SD, Sanes JR (1984) Denervation supersensitivity in skeletal muscle: analysis with a cloned cDNA probe. J Cell Biol 99: 332–335

    Article  PubMed  CAS  Google Scholar 

  • Morley BJ, Kemp GE (1981) Characterisation of a putative nicotinic acetylcholine receptor in mammalian brain. Brain Res Rev 3:81 –104

    Google Scholar 

  • Nef P, Mauron AS, Stalder C, Alliod C, Ballivet M (1984) Structure, linkage and sequence of the two genes encoding the delta and gamma subunits of the nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 81: 7975–7979

    Article  PubMed  CAS  Google Scholar 

  • Noda M, Furutani Y, Takahashi H, Toyosato M, Tanabe T, Shimizu S, Kikyotani S, Kayano T, Hirose T, Inayama S, Numa S (1983) Cloning and sequence analysis of cell cDNA and human genomic DNA encoding a-subunit precursor of muscle acetylcholine receptor. Nature 305: 8181–823

    Article  Google Scholar 

  • Norman RI, Mehraban F, Barnard EA, Dolly JO (1982) Nicotinic acetylcholine receptor from chick optic lobe. Proc Natl Acad Sci USA 79: 1321–1325

    Article  PubMed  CAS  Google Scholar 

  • Oswald RE, Freeman JA (1981) Alpha-bungarotoxin binding and central nervous system nicotinic acetylcholine receptors. Neurosci 6: 1–14

    Article  CAS  Google Scholar 

  • Popot J-L, Changeux J-P (1984) Nicotinic receptor of acetylcholine: structure of an oligomeric integral membrane protein. Phys Rev 64: 1162–1239

    CAS  Google Scholar 

  • Raftery MA, Junkapiller MW, Strader CD, Hood LE (1980) Acetylcholine receptor: complex of homologous subunits. Science 208: 1454–1457

    Article  PubMed  CAS  Google Scholar 

  • Sumikawa K, Houghton M, Smith JC, Bell L, Richards BM, Barnard EA (1982) The molecular cloning and characterisation of cDNA coding for the a subunit of the acetylcholine receptor. Nucleic Acids Res 10: 5809–5822

    Article  PubMed  CAS  Google Scholar 

  • Syapin PJ, Salvaterra PM, Engelhardt JK (1982) Neuronal-like features of TE671 cells: presence of a functional nicotinic cholinergic receptor. Brain Res 231: 365–377

    Article  PubMed  CAS  Google Scholar 

  • Takai T, Noda M, Furutani Y, Takahashi H, Notake M, Shimizu S, Kayano T, Tanabe T, Tanaka K, Hirose T, Inayama S, Numa S (1984) Primary structure of gamma subunit precursor of calf- muscle acetylcholine receptor deduced from the cDNA sequence. Eur J Biochem 143:109– 115

    Google Scholar 

  • Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW, Lee J, Yarden Y, Libermann TA, Schlessinger J, Downward J, Mayes ELV, Whittle N, Waterfield MD, Seeburg PH (1984a) Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309: 418–425

    Article  PubMed  CAS  Google Scholar 

  • Ullrich A, Berman CH, Dull TJ, Gray A, Lee JM (1984b) Isolation of the human insulin-like growth factor I gene using a single synthetic DNA probe. EMBO J 3: 361–364

    PubMed  CAS  Google Scholar 

  • Wang GK, Molinaro S, Schmidt J (1978) Ligand responses of a-bungarotoxin binding sites from skeletal muscle and optic lobe of the chick. J Biol Chem 253: 8507–8512

    PubMed  CAS  Google Scholar 

  • Watson CJ, Jackson JF (1985) An alternative procedure for the synthesis of double-stranded cDNA for cloning in phage and plasmid vectors. In: Glover D (ed) DNA cloning: a practical approach, vol I. IRL, Oxford, p 79

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jackson, J.F. et al. (1986). The Molecular Biology of Acetylcholine Receptors from the Vertebrate Peripheral and Central Nervous Systems. In: Montalcini, R.L., Calissano, P., Kandel, E.R., Maggi, A. (eds) Molecular Aspects of Neurobiology. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70690-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70690-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70692-9

  • Online ISBN: 978-3-642-70690-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics