Skip to main content

Das vaskuläre Endothel und seine Bedeutung im Rahmen pathobiologischer Prozesse

  • Conference paper
Anaesthesiologische Probleme in der Gefäßchirurgie

Zusammenfassung

Seit der allgemeineren Anwendung der Transmissionselektronenmikroskopie —etwa ab dem Jahre 1950 — hat die Ergründung des Feinbaus der Endothelzellen einen raschen Fortschritt genommen. Bis dahin hatte das Endothel — seit seiner Identifizierung als Gewebe [4, 103, 105, 120] waren immerhin mehr als 100 Jahre vergangen — im wesentlichen nur als porenlose „Haut, homogen und kontinuierlich wie Collodium“ [209], gegolten. Neben Palade, der 1953 als erster ultrastrukturelle Details verschiedener Endothelzelltypen systematisch darstellte [157], ist es v. a. Bennett [16] zu verdanken, daß die bald offenkundig gewordene Formenvielfalt der im Körper vorhandenen Endothelzelltypen in ein bis heute zweckmäßiges Ordnungsschema gebracht worden ist [16]. Es bahnten sich über rein strukturelle Untersuchungen hinausgehende experimentelle Möglichkeiten an, als Jaffe 1973 ein Verfahren zur Isolierung, Identifizierung und Züchtung von Endothelzellen aus menschlicher V. umbilicalis beschrieb [115]. Rasch wurden ähnliche Methoden auch für die Präparation und Kultivation anderer Endothelzellarten berichtet (zur Übersicht: [77, 78, 135, 150, 181]). Die an den gezüchteten Zellen auf relativ einfache Weise in vitro durchführbaren zellbiologischen, biochemischen, physiologischen und pharmakologischen Studien weisen heute immer mehr darauf hin, daß die einzelnen Endothelarten verschiedener vaskulärer Herkunft nicht nur morphologisch, sondern auch durch sehr große funktioneile Unterschiede geprägt sind [73]. Gleichzeitig besitzen sie aber auch eine ganze Reihe gemeinsamer struktureller und biochemischer Eigenschaften, die v. a. im Dienste des Endothels stehen, in seiner Gesamtheit Hüll- und Verteilungsorgan für das zirkulierende Blut zu sein, dieses gegen die interstitiellen Räume und die Parenchymgewebe in differenzierter Weise abzugrenzen und eine antithrombogene Gefäßinnenfläche aufzubauen bzw. ständig zu gewährleisten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Armstrong JM, Dusting GJ, Moncada S, Vane JR (1978) Cardiovascular actions of prostacyclin (PGI2), a metabolite of arachidonic acid which is synthesized by blood vessels, part II. Circ Res 1:112–119.

    Google Scholar 

  2. Asmussen I, Kjeldsen K (1975) Intimai ultrastructure of human umbilical arteries. Observations on arteries from newborn children of smoking and nonsmoking mothers. Circ Res 36:579–589.

    PubMed  CAS  Google Scholar 

  3. Astrup T (1978) Fibrinolysis: An overview. In: Davidson JF, Rowan RM, Samama MM, Desnoyers PC (eds) Progress in chemical fibrinolysis and thrombolysis. Raven, New York, p 1.

    Google Scholar 

  4. Auerbach L (1864) Über Lymph-und Blutgefäße. Virchows Arch Pathol Anat 33:340–394.

    Google Scholar 

  5. Ausprunk DH, Bondreau CL, Nelson BA (1981) Proteoglycans in the microvasculature I: Histochemical localisation in microvessels of the rabbit eye. Am J Pathol 103:353–366.

    PubMed  CAS  Google Scholar 

  6. Ausprunk DH, Bondreau CL, Nelson BA (1981) Proteoglycans in the microvasculature II: Histochemical localisation in proliferating capillaries of the rabbit cornea. Am J Pathol 103:367–375.

    PubMed  CAS  Google Scholar 

  7. Balleisen L, Gay S, Marx R, Kuhn K (1975) Comparative investigations of the influence of human and bovine collagen types I, II and III on the aggregation of human platelets. Klin Wochenschr 53:903–905.

    Article  PubMed  CAS  Google Scholar 

  8. Bang HO, Dyerberg J, Hørne N (1976) The composition of food consumed by Greenland Eskimos. Acta Med Scand 192:85–94.

    Article  Google Scholar 

  9. Barnes MJ, Scott DM (1983) Glycoproteins secreted by the endothelium and their involvement in specific interactions at the subendothelium. In: Cryer A (ed) Biochemical interactions at the endothelium. Elsevier, New York Oxford, p111.

    Google Scholar 

  10. Barnes MJ, Morton LF, Levene CI (1978) Synthesis of interstitial collagens by pig aortic endothelial cells in culture. Biochem Biophys Res Commun 84:646–653.

    Article  PubMed  CAS  Google Scholar 

  11. Barnes MJ, Bailey AJ, Gordon JL, MacIntyre (1980) Platelet aggregation by basement membraneassociated collagens. Thromb Res 18:375–388.

    Article  PubMed  CAS  Google Scholar 

  12. Becker CG, Harpel PC (1976) α2-macroglobulin on human vascular endothelium. J Exp Med 114:1–9.

    Article  Google Scholar 

  13. Becker CG, Murphy GE (1969) Demonstration of contractile protein in endothelium and cells of the heart valves, endothelium, intima, arteriosclerotic plaques, and Aschoff bodies of rheumatic heart disease. Am J Pathol 55:1–37.

    PubMed  CAS  Google Scholar 

  14. Becker GG, Hardy AM, Dubin T (1974) Contractile and relaxing proteins of smooth muscle, endothelial cells and platelets. In: Didsheim P, Shimamoio T, Yamaski H (eds) Platelets, thrombosis and inhibition. Schattauer, Stuttgart, p 25.

    Google Scholar 

  15. Benditt EP, Benditt JM (1973) Evidence for a monoclonal origin of human atherosclerotic plaques. Proc Natl Acad Sci USA 70:1753–1756.

    Article  PubMed  CAS  Google Scholar 

  16. Bennett AS, Luft JH, Hampton JC (1959) Morphological classification of vertebrate blood capillaries. Am J Physiol 196:381–390.

    PubMed  CAS  Google Scholar 

  17. Bertini F, Santolaya R (1970) A novel type of granules observed in blood endothelial cells and their relationship with blood pressure active factors. Experentia 26:522–523.

    Article  CAS  Google Scholar 

  18. Bird RM, Jaques WE (1959) Vascular lesions of hereditary hemorrhagic telangiectasia. N Engl J Med 260:597–599.

    Article  PubMed  CAS  Google Scholar 

  19. Blanchette-Mackie EJ, Scour RO (1971) Sites of lipoprotein lipase activity in adipose tissue perfused with chylomicrons. Electron microscope cytochemical study. J Cell Biol 51:1–25.

    Article  PubMed  CAS  Google Scholar 

  20. Bloom AL, Thomas DP (1981) Haemostasis and thrombosis. Livingstone, dinburgh London Melbourne New York.

    Google Scholar 

  21. Bloom AL, Giddings JC, Wilks CJ (1973) Factor VIII on the vascular intima: Possible importance in haemostasis and thrombosis. Natl N Biol 241:217–219.

    Article  CAS  Google Scholar 

  22. Blose SH, Meltzer DI (1981) Visualization of the 10-nm filament vimentin rings in vascular endothelial cells in situ. Close resemblance to vimentin cytoskeletons found in monolayers in vitro. Exp Cell Res 135:299–309.

    Article  PubMed  CAS  Google Scholar 

  23. Branton D (1966) Fracture faces of frozen membranes. Proc Natl Acad Sci USA 55:1048–1056.

    Article  PubMed  CAS  Google Scholar 

  24. Brendel K, Meezan E (1974) Isolated brain microvessels: A purified, metabolically active preparation from bovine cerebral cortex. Science 185:953–955.

    Article  PubMed  CAS  Google Scholar 

  25. Bruns RR, Palade GE (1968) Studies on blood capillaries in muscle. J Cell Biol 37:244–276.

    Article  PubMed  CAS  Google Scholar 

  26. Bundgaard M, Crone C, Frαkjaer-Jensen J (1979) Extreme rarity of transendothelial channels in frog mesenteric capillary (Abstract). J Physiol (Paris) 297:38.

    Google Scholar 

  27. Bundgaard M, Frαkjaer-Jensen J, Crone C (1979) Endothelial plasmalemmal vesicles as elements in a system of branching invaginations from the cell surface. Proc Natl Acad Sci USA 76:6439–6442.

    Article  PubMed  CAS  Google Scholar 

  28. Bundgaard M, Hagman P, Crone C (1983) The three-dimensional organization of plasmalemmal vesicular profiles in the endothelium of rat heart capillaries. Microvasc Res 25:358–368.

    Article  PubMed  CAS  Google Scholar 

  29. Bunting S, Gryglewski R, Moncaca S, Vane JR (1976) Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin X) which relaxes strips of mesenteric and coeliac arteries and inhibits platelet aggregation. Prostaglandins 12:897–913.

    Article  PubMed  CAS  Google Scholar 

  30. Buonassisi V, Colburn P (1982) Biological significance of heparan sulfate proteoglycans. In: Fishman AP (ed) Endothelium. New York Academy of Sciences, New York, p 76.

    Google Scholar 

  31. Burch GE (1974) Viruses and arteriosclerosis. Am Heart J 87:407–412.

    Article  PubMed  CAS  Google Scholar 

  32. Burri PH, Weibel ER (1968) Beeinflussung einer spezifischen cytoplasmatischen Organelle von Endothelzellen durch Adrenalin. Z Zellforsch Mikrosk Anat 88:426–440.

    Article  Google Scholar 

  33. Buss H, Schneider J, Hollweg HJ (1979) The endothelial surface of large beins of rabbit: Scanning electron microscopic observations. Pathol Res Pract 165:392–410.

    Article  PubMed  CAS  Google Scholar 

  34. Caplan BA, Schwartz CJ (1973) Increased endothelial cell turnover in areas in vivo Evans Blue uptake in the pig aorta. Atherosclerosis 17:401–417.

    Article  PubMed  CAS  Google Scholar 

  35. Chajek T, Stein O, Stein Y (1976) Interaction of concanavalin A with membrane-bound and soluble lipoprotein lipase of rat heart. Biochim Biophys Acta 431:507–518.

    PubMed  CAS  Google Scholar 

  36. Chan V, Chan TK (1979) Antithrombin III in fresh and cultured human endothelial cells: A natural anticoagulant from the vascular endothelium. Thromb Res 15:209–213.

    Article  PubMed  CAS  Google Scholar 

  37. Chand N, Altura BM (1981) Acetylcholine and bradykinin relax intrapulmonary arteries by acting on endothelial cells: Role in lung vascular disease. Science 213:1376–1379.

    Article  PubMed  CAS  Google Scholar 

  38. Chen AB, Amrani DL, Mosesson MN (1977) Heterogeneity of the cold-insoluble globulin (COg), a circulating cell surface protein. Biochim Biophys Acta 493:310–322.

    PubMed  CAS  Google Scholar 

  39. Cherry PD, Furchgott RF, Zawadzki JV (1981) The indirect nature of bradykinin relaxation of isolated arteries: Endothelial dependent and independent components (Abstract). Fed Proc 40:689.

    Google Scholar 

  40. Cherry PD, Furchgott RF, Zawadzki JV, Jothianandan D (1982) The role of endothelial cells in the relaxation of isolated arteries by bradykinin. Proc Natl Acad Sci USA 79:2106–2110.

    Article  PubMed  CAS  Google Scholar 

  41. Chesney CM, Harper E, Colman RW (1974) Human platelet collagenase. J Clin Invest 53:1647–1654.

    Article  PubMed  CAS  Google Scholar 

  42. Chew EC, Wallace AC (1976) Demonstration of fibrin in early stages of experimental metastases. Cancer Res 36:1904–1909.

    PubMed  CAS  Google Scholar 

  43. Chohan P, Cryer A (1980) Lipoprotein lipase activity of rat cardiac muscle. Changes in the enzyme activity during incubations of isolated cardiac muscle cells in vitro. Biochem J 186:873–879.

    PubMed  CAS  Google Scholar 

  44. Cliffton EE, Grossi CE (1974) The rationale of anticoagulants in the treatment of cancer. J Med 5:107–113.

    PubMed  CAS  Google Scholar 

  45. Colman RW, Wong PY (1977) Participation of Hageman factor dependent pathways in human disease states. Thromb Haemost 38:751–775

    PubMed  CAS  Google Scholar 

  46. Corkey RF, Corkey BE, Gimbrone MA (1981) Hexose transport in normal and SV 40-transformed human endothelial cells in culture J Cell Physiol 106:425–434.

    Article  PubMed  CAS  Google Scholar 

  47. Cornhill JF, Levesque MJ, Herderick EE, Nerem RM, Kilman JM, Vasco JS (1980) Quantitative study of the rabbit aortic endothelium using vascular casts. Atherosclerosis 35:321–337.

    Article  PubMed  CAS  Google Scholar 

  48. Crandall ED, O’Brasky JE (1978) Direct evidence of participation of rat lung carbonic anhydrase in CO2 reactions. J Clin Invest 62:618–622.

    Article  PubMed  CAS  Google Scholar 

  49. Crawford T (1977) Blood and lymphatic vessels. In: Anderson WAD, Kissane JM (eds) Pathology. Mosby, St. Louis, p 879.

    Google Scholar 

  50. Cryer A (1983) Biochemical interactions at the endothelium. Elsevier, Amsterdam New York Oxford.

    Google Scholar 

  51. Cryer A (1983) Lipoprotein lipase — endothelial interactions. In: Cryer A (ed) Biochemical interactions at the endothelium. Elsevier, New York Oxford, p 245.

    Google Scholar 

  52. Cryer A, Chohan P, Smith JJ (1981) Effectors of lipoprotein lipase secretion from isolated cardiac muscle cells incubated in vitro. Life Sci 29:923–929.

    Article  PubMed  CAS  Google Scholar 

  53. RL, Hoak JC, Fry GL (1978) Effect of aspirin on thrombin-induced adherence of platelets to cultured cells from the blood vessel wall. J Clin Invest 62:847–856.

    Article  Google Scholar 

  54. Dahlen SE, Hedquist P, Hammarström S, Samuelsson B (1980) Leukotrienes are potent constrictors of human bronchi. Nature 288:484–486.

    Article  PubMed  CAS  Google Scholar 

  55. D’Angelo V, Villa S, Mysliewies M (1978) Defective fibrinolytic and prostacyclin-like activity in human atheromatous plaques. Thromb Haemost 39:535–536.

    PubMed  Google Scholar 

  56. Danon D, Skutelsky E (1976) Endothelial surface charge and its possible relationship to thrombogenesis. Ann NY Acad Sci 275:47–63.

    Article  PubMed  CAS  Google Scholar 

  57. DeClerck F, DeBrabander M, Weals H, Van de Velde V (1981) Direct evidence for contractile capacity of endothelial cells. Thromb Res 23:505–520.

    Article  CAS  Google Scholar 

  58. DeGowin RL, Lewis LJ, Hoak JC, Mueller AL, Gibson DP (1974) Radiosensitivity of human endothelial cells in culture. J Lab Clin Med 84:42–48.

    CAS  Google Scholar 

  59. Dejana E, Cazenave JP, Groves HM, Kinlough-Rathborne RL, Richardson M, Packham MA, Mustard JF (1980) The effect of aspirin inhibition of PGO2 production on platelet adherence to normal and damaged rabbit aortae. Thromb Res 17:453–464.

    Article  PubMed  CAS  Google Scholar 

  60. DeMey JG, Vanhoutte PM (1981) Role of the intima in cholinergic and purinergic relaxation of isolated canine femoral arteries. J Physiol (Lond) 316:437–455.

    Google Scholar 

  61. DeMey JG, Vanhoutte PM (1982) Heterogeneous behavior of canine arterial and venous wall. Circ Res 51:439–447.

    CAS  Google Scholar 

  62. „gestrichen“.

    Google Scholar 

  63. Dobrina A, Rossi F (1983) Metabolic properties of freshly isolated bovine endothelial cells. Biochim Biophys Acta 762:295–301.

    Article  PubMed  CAS  Google Scholar 

  64. Dosne AM, Legrand C, Bauvois B, Bodevin E, Caen JP (1978) Comparative degradation of adenylnucleotides by cultured endothelial cells and fibroblasts. Biochem Biophys Res Commun 85:183–189.

    Article  PubMed  CAS  Google Scholar 

  65. Dyerberg J, Bang HO (1979) Haemostatic function and platelet polyansaturated fatty acids in Eskimos. Lancet 11:433–435.

    Article  Google Scholar 

  66. Dyerberg’ J, Bang HO, Hjørne N (1975) Fatty acid composition of the plasma lipids in Greenland Eskimos. Am J Clin Nutr 28:958–966.

    PubMed  CAS  Google Scholar 

  67. Dyerberg J, Bang HO, Stoffersen E, Moneada S, Vane JR (1978) Eicosapentaenoic acid and prevention of thrombosis and atherosclerosis. Lancet 11:117–119.

    Article  Google Scholar 

  68. Evensen SA, Shepro D (1974) DNA synthesis in rat aortic endothelium: Effect of bacterial endotoxin and trauma. Microvasc Res 8:90–96.

    Article  PubMed  CAS  Google Scholar 

  69. Falk H, Creech JL, Heath CW, Johnson MN, Key MM (1974) Hepatic disease among workers at a vinyl chloride polymerization plant. JAMA 230:59–63.

    Article  PubMed  CAS  Google Scholar 

  70. Farquhar MG, Palade GE (1963) Junctional complexes in various epithelia. J Cell Biol 17:375–412.

    Article  PubMed  CAS  Google Scholar 

  71. Fidler IJ (1975) Mechanisms of cancer invasion and metastatis. In: Becker FF (ed) Cancer: A comprehensive treatise, vol 4. Plenum, New York, p 101.

    Google Scholar 

  72. Fielding CJ, Havel RJ (1977) Lipoprotein lipase. Arch Pathol Lab Med 101:225–229.

    PubMed  CAS  Google Scholar 

  73. Fishman AP (1982) Endothelium, a distributed organ of diverse capabilities. In: Fishman AP (ed) Endothelium. New York Academy of Sciences, New York, p 1.

    Google Scholar 

  74. Florey L (1966) The endothelial cell. Br Med J II:487–490.

    Article  Google Scholar 

  75. Folkman J (1974) Tumor angiogenesis. Adv Cancer Res 19:331–358.

    Article  PubMed  CAS  Google Scholar 

  76. Folkman J (1982) Angiogenesis: Initiation and control. In: Fishman AP (ed) Endothelium. New York Academy of Sciences, New York, p 212.

    Google Scholar 

  77. Folkman J, Haudenschild C (1982) Angiogenesis in vitro: Implications for tumor biology. In: Nossel HL, Vogel HJ (eds) Pathobiology of the endothelial cell. Academic Press, New York, p 79.

    Google Scholar 

  78. Folkman J, Haudenschild CC, Zetter BR (1979) Longterm culture of capillary endothelial cells. Proc Natl Acad Sci USA 76:5217–5221.

    Article  PubMed  CAS  Google Scholar 

  79. Frøkjaer-Jensen J (1980) Three-dimensional organization of plasmalemmal vesicles in endothelial cells. An analysis by serial sectioning of frog mesenteric capillaries. J Ultrastruct Res 73:9–20.

    Article  PubMed  Google Scholar 

  80. Furchgott RF (1981) The requirement for endothelial cells in the relaxation of arteries by acetylcholine and some other vasodilators. Trends Pharmacol Sci 2:173–176.

    Article  CAS  Google Scholar 

  81. Furchgott RF (1982) Acetylcholine and blood vessel relaxation: Complications and clarifications. In: Kalsner S (ed) Trends in autonomic pharmacology, vol 2. Urban & Schwarzenberg, München, p497.

    Google Scholar 

  82. Furchgott RF (1982) Endothelium-dependent inhibitory effects of acetylcholine, adenosine triphosphate, thrombin and arachidonic acid in the canine femoral artery. J Pharmacol Exp Ther 222:166–173.

    Google Scholar 

  83. Furchgott RF (1983) Role of endothelium in response of vascular smooth muscle. Circ Res 53 53:557–573.

    CAS  Google Scholar 

  84. Furchgott RF, Zawadzki JV (1980) Acetylcholine relaxes arterial smooth muscle by releasing a relaxing substance from endothelial cells (Abstract). Fed Proc 39:581.

    Google Scholar 

  85. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376.

    Article  PubMed  CAS  Google Scholar 

  86. Furchgott RF, Cherry PD, Zawadzki JV (1983) Endothelium-dependent relaxation of arteries by acetylcholine, bradykinin and other agents. In: Bevan JA, Fujiwara M, Maxwell RA, Mohri K, Shibata S, Toda N (eds) Vascular neuroeffector mechanisms: 4th International Symposium. Raven, New York, p 37.

    Google Scholar 

  87. Gader AMA, Clarkson AR, Cash JD (1973) The plasminogen activator and coagulation factor VIII response to adrenaline, noradrenaline, isoprenaline and salbutamol in man. Thromb Res 2:9–15.

    Article  CAS  Google Scholar 

  88. Gaynor E (1971) Increased mitotic activity in rabbit endothelium after endotoxin: An autoradiographic study. Lab Invest 24:318–320.

    PubMed  CAS  Google Scholar 

  89. Giddings JC (1983) The control of intravascular blood coagulation and haemostasis at endothelial surfaces. In: Cryer A (ed) Biochemical interactions at the endothelium. Elsevier, Amsterdam New York Oxford, p 167.

    Google Scholar 

  90. Gimbrone MA, Cotran RS, Folkman J (1974) Human vascular endothelial cells in culture. Growtz and DNA synthesis. J Cell Biol 60:673–684.

    Article  PubMed  CAS  Google Scholar 

  91. Goehlert UG, Ng Ying Kin NMK, Wolfe LS (1981) Biosynthesis of prostacyclin in rat cerebral microvessels and the choroid plexus. J Neurochem 36:1192–1201.

    Article  PubMed  CAS  Google Scholar 

  92. Goldstein GW, Wolinsky JS, Csejtey J, Diamond J (1975) Isolation of metabolically active capillaries from rat brain. J Neurochem 25:715–717.

    Article  PubMed  CAS  Google Scholar 

  93. Gospodarowicz D, Greenburg G, Foidart J-M, Savion N (1981) The production and localisation of laminin in cultured vascular and corneal endothelial cells. J Cell Physiol 107:171–183.

    Article  PubMed  CAS  Google Scholar 

  94. Greenhill NS, Stebhens WE (1981) Scanning electron-microscopic study of the anastomosed vein of arteriovenous fistulae. Arteriosclerosis 39:383–393.

    Article  CAS  Google Scholar 

  95. Gryglewski R, Bunting S, Moncada S, Flower RJ, Vane JR (1976) Arterial walls are protected against deposition of platelet thrombi by a substance (prostaglandin X) which then makes from prostaglandin encoperoxides. Prostaglandins 12:658–713.

    Article  Google Scholar 

  96. Gutstein WH, Pari F (1973) Ultrastructural changes of coronary artery endothelium associated with biliary obstruction in the rat. Am J Pathol 71:49–60.

    PubMed  CAS  Google Scholar 

  97. Hamberg M, Svensson J, Samuelson B (1975) Thromboxanes: A new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl cad Sci USA 72:2994–2998

    Article  CAS  Google Scholar 

  98. Hammersen F (1980) Endothelial contractility — does it exist: Adv Microcirc 9:95–134.

    Google Scholar 

  99. Harker LA, Ross R, Slichter SJ, Scott CR (1976) Homocysteine-induced arteriosclerosis. The role of endothelial cell injury and platelet response in its genesis. J Clin Invest 58:731–741.

    Article  PubMed  CAS  Google Scholar 

  100. Hashimoto PH (1972) Intracellular channels as a route for protein passage in the capillary endothelium of shark brain. Am J Anat 134:41–58.

    Article  PubMed  CAS  Google Scholar 

  101. Haudenschild CC, Cotran RS, Gimbrone MA Jr, Folkman J (1976) Fine structure of vascular endothelium in culture. J Ultrastruct Res 50:22–32.

    Article  Google Scholar 

  102. Heifetz A, Allen D (1982) Biosynthesis of cell surface sulphated glycoproteins by cultured vascular endothelial cells. Biochemistry 21:171–177.

    Article  PubMed  CAS  Google Scholar 

  103. Henle J (1841) Allgemeine Anatomie Lehre von den Mischungs-und Formbestandteilen des menschlichen Körpers. Voss, Leipzig.

    Google Scholar 

  104. Higgs EA, Moneada S (1983) Platelet-endothelium interactions, thromboxanes and prostaglandin derivatives. In: Cryer A (ed) Biochemical interactions and the endothelium. Elsevier, New York Oxford, p 207.

    Google Scholar 

  105. His W (1865) Die Häute und Höen des Körpers. Schweighauserische Universitätsbuchdruckerei, Basel.

    Google Scholar 

  106. Holmberg L, Mannucci PM, Turesson I, Ruggeri ZM, Nilsson IM (1974) Factor VIII antigen in the vessel walls in von Willebrand’s disease and haemophilia. Scand J Haematol 13:33–38.

    Article  PubMed  CAS  Google Scholar 

  107. Howard BV (1977) Uptake of very low density lipoprotein triglyceride by bovine aortic endothelial cells in culture. J Lipid Res 18:561–571.

    PubMed  CAS  Google Scholar 

  108. Howard BV, Macarak EJ, Gunson D, Kefalides NA (1976) Characterization of the collagens synthesised by endothelial cells in culture. Proc Natl Acad Sci USA 73:2361–2364.

    Article  PubMed  CAS  Google Scholar 

  109. Hoyer LN, Santos RP, Hoyer JR (1973) Antihemophilic factor antigen: Localisation in endothelial cells by immunofluorescent microscopy. J Clin Invest 52:2737–2744.

    Article  PubMed  CAS  Google Scholar 

  110. Hughes J, Gillis CN, Bloom FN (1969) The uptake and disposition of DL-norepinephrine in perfused rat lung. J Pharmacol Exp Ther 169:237–248.

    PubMed  CAS  Google Scholar 

  111. Hultin MB, Nemerson Y (1978) Activation of factor X by factors IXa and VIII. A specific assay for factor IXa in the presence of thromb in-activated factor VIII. Blood 52:928–940.

    PubMed  CAS  Google Scholar 

  112. Hume DM, Merrill JP, Miller BF, Thorn GW (1955) Experiences with renal homotransplantation in the human: Report of nine cases. J Clin Invest 34:327–382.

    Article  PubMed  CAS  Google Scholar 

  113. Ingram GIC, Jones RV, Hershgold EJ, Denson KWE, Perkins JR (1977) Factor VIII activity and antigen, platelet count and biochemical changes after adrenoreceptor stimulation. Br J Haematol 35:81–100.

    Article  PubMed  CAS  Google Scholar 

  114. Jaffe EA, Mosher DF (1978) Synthesis of fibronectin by cultured human endothelial cells. J Exp Med 147:177–179.

    Article  Google Scholar 

  115. Jaffe EA, Nachman RL, Becker CG (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52:2745–2756.

    Article  PubMed  CAS  Google Scholar 

  116. Jørgensen L, Hovig T, Rowsell HC, Mustard JF (1970) Adenosine diphosphate-induced platelet aggregation and vascular injury in swine and rabbits. Am J Pathol 61:161–176

    PubMed  Google Scholar 

  117. Karnovsky MJ (1967) The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J Cell Biol 35:213–236.

    Article  PubMed  CAS  Google Scholar 

  118. Kefalides NA (1973) Structure and biosynthesis of basement membranes. Int Rev Connect Tissue Res 6:63–104.

    PubMed  CAS  Google Scholar 

  119. Kniker WT, Cochrane CG (1968) The localization of circulating immune complexes in experimental serum sickness. The role of vasoactive amines and hydrodynamic forces. J Exp Med 127:119–135.

    Article  PubMed  CAS  Google Scholar 

  120. Kölliker A (1855) Handbuch der Gewebelehre des Menschen. Engelmann, Leipzig.

    Google Scholar 

  121. Kompiang IP, Bensadoun A, Young MWN (1976) Effect of an antilipoprotein lipase serum on plasma triglyceride removal. J Lipid Res 17:498–505.

    PubMed  CAS  Google Scholar 

  122. Ku D (1982) Coronary vascular reactivity after acute myocardial ischemia. Science 218:576–578.

    Article  PubMed  CAS  Google Scholar 

  123. Lauwerynes JM, Baert J, DeLoecker W (1976) Fine filaments in lymphatic endothelial cells. J Cell Biol 68:163–167.

    Article  Google Scholar 

  124. Lazarides E (1980) Intermediate filaments as mechanical integrators of cellular space. Nature 283:249–256.

    Article  PubMed  CAS  Google Scholar 

  125. Levin EG, Loskutoff DJ (1979) Comparative studies of the fibrinolytic activity of cultured vascular cells. Thromb Res 15:869–878.

    Article  PubMed  CAS  Google Scholar 

  126. Lieberman GE, Lewis GP, Peters TJ (1977) A membrane-bound enzyme in rabbit aorta cysable of inhibiting adenosine-diphosphate-induced platelet aggregation. Lancet II:330–332.

    Article  Google Scholar 

  127. Lollar P, Owen WG (1980) Clearance of thrombin from circulation in rabbits by high-affinity binding sites on endothelium. Possible role in the inactivation of thrombin by antithrombin III. J Clin Invest 66:1222–1230.

    Article  PubMed  CAS  Google Scholar 

  128. Loskutoff DJ, Gerna M (1982) An inhibitor in rabbit endothelial cells that recognizes urokinase-like but not tissue-type plasminogen activators. Haemostasis [Suppl 1] 11:48.

    Google Scholar 

  129. MacIntyre DE, Pearson JD, Gordon JD (1978) Localisation and stimulation of prostacyclin production in vascular cells. Nature 271:549–551.

    Article  PubMed  CAS  Google Scholar 

  130. Majno G, Joris I (1978) Endothelium 1977: A review. In: Chandler AB (ed) Advances in experimental medicine and biology. The thrombocytic process in artherogenesis. Plenum, New York, p 169.

    Google Scholar 

  131. Majno G, Palade GE, Schoefl GI (1961) Studies on inflammation. II. The site of action of histamine and serotonin along the vascular tree: A topographic study. J Biophys Biochem Cytol 11:607–626.

    Article  PubMed  CAS  Google Scholar 

  132. Mannucci PM, Ruggeri ZM, Pareti FI, Capitanio A (1977) 1-Deamino-8D-arginine-vasopressin: A new pharmacological approach to the management of haemophilia and von Willebrand’s disease. Lancet I:869–872.

    Article  Google Scholar 

  133. Marcus AJ, Broekman MJ, Weksler BB, Jaffe EA, Safier LB, Ullman HL, Tack-Goldman K (1981) Interactions between stimulated platelets and endothelial cells in vitro. Philos Trans R Soc Lond Biol 294:343–353.

    Article  PubMed  CAS  Google Scholar 

  134. Marlar RA, Griffin JH (1980) Deficiency of protein C inhibitor in combined factor V/VIII deficiency disease. J Clin Invest 66:1186–1189.

    Article  PubMed  CAS  Google Scholar 

  135. Martin GM, Ogburn CE (1977) Cell, tissue, and organoid cultures of blood vessels. In: Rothblat GM, Cristofolo VJ (eds) Growth, nutrition, and metabolism of cells in culture, vol III. Academic Press, New York, p 1.

    Google Scholar 

  136. Matsusaka T (1975) Tridimensional views of the relationship of pericytes to endothelial cells of capillaries in the human choroid and retina. J Electron Microsc (Tokyo) 24:13–18.

    CAS  Google Scholar 

  137. Maynard JR, Dreyer BE, Stemerman MB, Pitlick FA (1977) Tissue-factor coagulant activity of cultured human endothelial and smooth muscle cells and fibroblasts. Blood 50:387–395.

    PubMed  CAS  Google Scholar 

  138. Moncada S, Vane JR (1978) Pharmacology and endogeneous roles of prostaglandin endoperoxides, thromboxane A2, and prostacyclin. Pharmacol Rev 30:293–331.

    PubMed  CAS  Google Scholar 

  139. Moncada S, Gryglewski R, Bunting S, Vane JR (1976) An enzyme isolateci from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263:663–665.

    Article  PubMed  CAS  Google Scholar 

  140. Moore A, Jaffe EA, Becker CC, Nachman RL (1977) Myosin in cultured human endothelial cells. Br J Haematol 35:71–79.

    Article  PubMed  CAS  Google Scholar 

  141. Morrison AD, Orci L, Berwick L, Perrelet A, Winegrad AI (1977) The effects of anoxia on the morphology and composite metabolism of the intact aortic intima-media preparation. J Clin Invest 59:1027–1037.

    Article  PubMed  CAS  Google Scholar 

  142. Mosher DF (1975) Cross linking of cold-insoluble globulin by fibrin stabilising factor. J Biol Chem 250:6614–6621.

    PubMed  CAS  Google Scholar 

  143. Murano G (1978) The Hageman connection. Interrelationships of blood coagulation fibrino(geno)lysis, kinin generation and complement activation. Am J Haematol 4:409–417.

    Article  CAS  Google Scholar 

  144. Mustard JF, Perry DW, Kinlough-Rathborne RL, Packham MA (1975) Factors responsible for ADP-induced release reaction of human platelets. Am J Physiol 228:1757–1765.

    PubMed  CAS  Google Scholar 

  145. Nachman RL, Weksler B, Ferris B (1972) Characterization of human platelet vascular permeabilityenhancing activity. J Clin Invest 51:549–556.

    Article  PubMed  CAS  Google Scholar 

  146. Nachman RL, Levine R, Jaffe EA (1977) Synthesis of factor VIII antigen by cultured guinea pig megakaryocytes. J Clin Invest 60:914–921.

    Article  PubMed  CAS  Google Scholar 

  147. Nees S (1983) Studien über den Stoffwechsel von Adeninnukleotiden und Adenosin in gezüchteten Endothelzellen aus Koronargefäßen. Habilitationsschrift, Ludwig Maximilians-Universität, München.

    Google Scholar 

  148. Nees S, Gerlach E (1983) Adenine nucleotide and adenosine metabolism in cultured coronary endothelial cells: Formation and release of adenine compounds and possible functional implications. In: Berne RM, Rall TN, Rubio R (eds) Regulatory function of adenosine. Nijhoff, Boston The Hague Lancaster, p 347.

    Chapter  Google Scholar 

  149. Nees S, Willershausen-Zönnchen B, Gerbes AL, Gerlach E (1980) Studies on cultured coronary endothelial cells. Folia Angiol 28:64–68.

    Google Scholar 

  150. Nees S, Gerbes AL, Gerlach E (1981) Isolation, identification and continuous culture of coronary endothelial cells from guinea pig hearts. Eur J Cell Biol 24:287–297.

    PubMed  CAS  Google Scholar 

  151. Nees S, Herzog V, Böck M, Gerlach E (1984) Vasoactive adenosine perfused through isolated hearts is selectively trapped within the coronary endothelium (Abstract). Fed Proc 43:900.

    Google Scholar 

  152. Nerem RM, Levesque MJ, Cornhill JF (1981) Vascular endothelial morphology as an indicator of the pattern of blood flow. J Biomech Eng 103:172–176

    Article  PubMed  CAS  Google Scholar 

  153. Nestel PJ, Havel RJ, Bezman A (1963) Metabolism of constituent lipids of dog chylomicrons J Clin Invest 42:1313–1321.

    Article  PubMed  CAS  Google Scholar 

  154. Nossel HL (1977) Bleeding disorders due to vessel wall abnormalities. In: Thorn GW, Adams RD, Braunwald E, Isselbacher KJ, Petersdorf RG (eds) Harrison’s principles of internal medicine, 8th ed. McGraw-Hill, New York, p 1719.

    Google Scholar 

  155. O’Flaherty JT (1982) Biology of disease. Lipid mediators of inflammation and allergy. Lab Invest 47:314–329.

    PubMed  Google Scholar 

  156. Gestrichen.

    Google Scholar 

  157. Palade GE (1953) Fine structure of blood capillaries. J Appl Physiol 24:1424–1433.

    Google Scholar 

  158. Palade GE, Simionescu M, Simionescu N (1979) Structural aspects of the permeability of the microvascular endothelium. Acta Physiol Scand [Supp1] 463:11–32.

    CAS  Google Scholar 

  159. Pearson JD, Carleton JS, Gordon JD (1980) Metabolism of adenine nucleotides by ectoenzymes of vascular endothelial and smooth-muscle cells in culture. Biochem J 190:421–429.

    PubMed  CAS  Google Scholar 

  160. Pearson JD, Hellewell PG, Gordon JL (1983) Adenosine uptake and adenine nucleotide metabolism by vascular endothelium. In: Berne RM, Rall TN, Rubio R (eds) Regulatory function of adenosine Nijhoff, Boston The Hague Lancaster, p 333.

    Chapter  Google Scholar 

  161. Pearson TA, Wang A, Solez K, Heptinstall RH (1975) Clonal characteristics of fibrons plaques and fatty streaks from human aortas. Am J Pathol 81:379–388.

    PubMed  CAS  Google Scholar 

  162. Pinto da Silva P, Branton D (1979) Membrane splitting in freeze-etching. Covalently bound ferritin as a membrane marker. J Cell Biol 45:598–605.

    Article  Google Scholar 

  163. Reidy MA, Langille BL (1980) The effect of local blood flow patterns on endothelial cell morphology. Exp Mol Pathol 32:276–289.

    Article  PubMed  CAS  Google Scholar 

  164. Renkin EM (1977) Multiple pathways of capillary permeability. Circ Res 41:735–743.

    PubMed  CAS  Google Scholar 

  165. Renkin EM (1979) Relation of capillary morphology to transport of fluid and large molecules. A review. Acta Physiol Scand [Supp1] 463:81–91.

    CAS  Google Scholar 

  166. Rhodin JAG (1967) The ultrastructure of mammalian arterioles and precapillary sphincters. J Ultrastruct Res 18:181–223.

    Article  PubMed  CAS  Google Scholar 

  167. Rhodin JAG (1968) Ultrastructure of mammalian venous capillaries, venules, and small collecting veins. J Ultrastruct Res 25:452–500.

    Article  PubMed  CAS  Google Scholar 

  168. Robertson AL (1978) The spectrum of arterial disease. In: Gotto AM, DeBakey M (eds) Atherosclerosis reviews, vol 3. Raven, New York, p 57.

    Google Scholar 

  169. Röhlich P, Olah I (1967) Cross-striated fibrils in endothelium of the rat myometral arterioles. J Ultrastruct Res 18:667–676.

    Article  PubMed  Google Scholar 

  170. Ross R (1980) Platelets, smooth muscle proliferation and atherosclerosis. In: Manninen V (ed) 5th Paavo Nurmi Symposium: Thrombosis and blood vessel wall interactions in coronary heart disease. Amqvist & Wiksell, Stockholm, p 82.

    Google Scholar 

  171. Ross R, Glomset J (1976) The pathogenesis of atherosclerosis, part I. N Engl J Med 295:369–377.

    Article  PubMed  CAS  Google Scholar 

  172. Ross R, Harker L (1976) Hyperlipidemia and artherosclerosis. Chronic hyperlipidemia initiates and maintains lesions by endothelial cell desquamation and lipid accumulation. Science 193:1094–1100.

    Article  PubMed  CAS  Google Scholar 

  173. Ross R, Glomset J, Kariya B, Harker L (1974) A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro. Proc Natl Acad Sci USA 71:1207–1210.

    Article  PubMed  CAS  Google Scholar 

  174. Rothblat GH, DeMartinis FD (1977) Release of lipoprotein lipase from rat adipose tissue cells grown in culture. Biochem Biophys Res Commun 78:45–50.

    Article  PubMed  CAS  Google Scholar 

  175. Rowlands DT, Hill GS, Zmijewski CM (1976) The pathology of renal homograft rejection: A review. Am J Pathol 85:773–804.

    PubMed  Google Scholar 

  176. Ryan JW, Ryan US (1981) Endothelial metabolism. In: Eftros RM, Schmid-Schönbein H, Ditzel J (eds) Microcirculation. Current physiologic, medical and surgical concepts. Academic Press, New York, p 147.

    Google Scholar 

  177. Ryan JW, Ryan US, Schultz DR, Whitaker C, Chung A, Dorer FE (1975) Subcellular localization of pulmonary angiotensin converting enzyme (kininase II). Biochem J 146:497–499.

    PubMed  CAS  Google Scholar 

  178. Ryan TJ (1976) Immunological aspects of vasculitis. In: Ryan TJ (ed) Microvascular injury: Vasculitis, stasis and ischemia. Saunders, Philadelphia, p 135.

    Google Scholar 

  179. Ryan US, Ryan JW, Whitacker C, Chiu A (1976) Localization of antiotensin converting enzyme (kininase II). II. Immunocytochemistry and immunofluorescence. Tissue Cell 8:125–146.

    Article  PubMed  CAS  Google Scholar 

  180. Ryan US, Whitney PL, Ryan JW (1979) Pulmonary endothelial cells possess carbonic anhydrase. Circulation [Suppl 2] 59/60:108.

    Google Scholar 

  181. Ryan US, Mortara M, Whitaker C (1980) Methods for microcarrier culture of bovine pulmonary artery endothelial cells avoiding the use of enzymes. Tissue Cell 12:619–635.

    Article  PubMed  CAS  Google Scholar 

  182. Sacks T, Moldow CF, Craddock PR, Bowers TK, Jacob HS (1979) Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes. An in vitro model of immune vascular damage. J Clin Invest 61:1161–1167.

    Article  Google Scholar 

  183. Sage H, Crouch E, Bornstein P (1979) Collagen synthesis by bovine aortic endothelial cells in culture. Biochemistry 18:5433–5442.

    Article  PubMed  CAS  Google Scholar 

  184. Sage H, Pritzl P, Bornstein P (1981) Characterization of cell matrix associated collagens synthesised by aortic endothelial cells in culture. Biochemistry 20:436–442.

    Article  PubMed  CAS  Google Scholar 

  185. Samuelson B (1983) Leukotrienes: Mediators of immediate hypersensitivity reactions and inflammation. Science 220:568–575.

    Article  Google Scholar 

  186. Santoro SA, Cunningham LW (1977) Collagen-mediated platelet aggregation: Evidence for multivalent interactions of intermediate specificity between collagen und platelets. J Clin Invest 60:1054–1060.

    Article  PubMed  CAS  Google Scholar 

  187. Schaefer EJ, Eisenberg S, Levy RI (1978) Lipoprotein apoprotein metabolism. J Lipid Res 19:667–687.

    PubMed  CAS  Google Scholar 

  188. Schor SL, Schor AM, Brazill GW (1981) The effects of fibronectin on the migration of human foreskin fibroblasts and syrian hamster melanoma cells into three dimensional gels of native collagen fibres. J Cell Sci 48:301–314.

    PubMed  CAS  Google Scholar 

  189. Schwartz S, Haudenschild CC, Eddy EM (1978) Endothelial regeneration in rat aortic intima. Lab Invest 38:568–580.

    PubMed  CAS  Google Scholar 

  190. Scow RO, Blanchette-Mackie EJ, Smith LC (1980) Transport of lipid across capillary endothelium. Fed Proc 39:2610–2617.

    PubMed  CAS  Google Scholar 

  191. Shasby DM, Shasby SS, Sullivan JM, Peach MJ (1982) Role of endothelial cell cytoskeleton in control of endothelial permeability. Circ Res 51:657–661.

    PubMed  CAS  Google Scholar 

  192. Shepro D, D’Amore PA (1980) Endothelial cell metabolism. Adv Microcirc 9:161–205.

    CAS  Google Scholar 

  193. Silkworth JB, Stebhens WE (1975) The shape of endothelial cells in face preparations of rabbit bloos vessels. Angiology 26:474–487.

    Article  Google Scholar 

  194. Simionescu M (1980) Structural and functional differentiation of microvascular endothelium. In: Porter R, O’Connor M, Whelen J (eds) Blood cells and vessel walls: Functional interactions, vol 71. Ciba Foundation Symposium. Excerpta Medica, Amsterdam, p 39.

    Google Scholar 

  195. Simionescu M, Simionescu N, Palade GE (1982) Biochemically differentiated microdomains of the cell surface of capillary endothelium. In: Fishman A (ed) Endothelium. New York Academy of Sciences, New York, p 9.

    Google Scholar 

  196. Simionescu N, Simionescu M (1977) The cardiovascular system. In: Weiss L, Greep R (eds) Histology. McGraw-Hill, New York, p 373.

    Google Scholar 

  197. Simionescu N, Simionescu M, Palade GE (1975) Permeability of muscle capillyries to small hemopeptides. Evidence for the existence of patent transendothelial channels. J Cell Biol 64:586–607.

    Article  PubMed  CAS  Google Scholar 

  198. Simionescu N, Simionescu M, Palade GE (1976) Recent studies on vascular endothelium. Ann NY Acad Sci 275:64–75.

    Article  PubMed  CAS  Google Scholar 

  199. Simionescu N, Simionescu M, Palade GE (1976) Structural basis of permeability in sequential segments of the microvasculature. II. Pathways followed by microperoxidase across the endothelium. Microvasc Res 15:17–36.

    Article  Google Scholar 

  200. Smith U, Ryan JW, Smith DS (1973) Freeze-etch studies of the plasma membrane of pulmonary endothelial cells. J Cell Biol 56:492–499.

    Article  PubMed  CAS  Google Scholar 

  201. Steinsiepe KF, Weibel ER (1970) Elektronenmikroskopische Untersuchungen an spezifischen Organellen von Endothelzellen des Frosches. Z Zellforsch 108:105–126.

    Article  PubMed  CAS  Google Scholar 

  202. Strum JM, Junod AF (1972) Radioautographic demonstration of 5-hydroxytryptamine-[su3H uptake by pulmonary endothelial cells. J Cell Biol 54:456–467.

    Article  PubMed  CAS  Google Scholar 

  203. Svendsen E (1979) Focal endothelial injury in rabbit aorta, aggravation of injury by 2 days of cholesterol feeding. Acta Pathol Microbiol Scand [A] 87:123–130.

    Google Scholar 

  204. Thorgeirsson G, Robertson AL (1978) The vascular endothelium — pathobiologic significance. Am J Pathol 93:803–848.

    PubMed  CAS  Google Scholar 

  205. Tilton RG, Kilo C, Williamson JR (1979) Pericyte-endothelial relationship in cardiac and skeletal muscle capillaries. Microvasc Res 18:325–335.

    Article  PubMed  CAS  Google Scholar 

  206. Trelstad RL, Carvalho ACA (1979) Type IV and type „A-B“collagens do not elicit platelet aggregation or the serotonin release reaction. J Lab Clin Med 93:499–505.

    PubMed  CAS  Google Scholar 

  207. Van de Voorde J, Leusen I (1983) Role of endothelium in the vasodilator response of rat thoracic aorta to histamine. Eur J Pharmacol 87:113–120.

    Article  PubMed  Google Scholar 

  208. Vegge T, Ringsvold A (1969) Ultrastructure of the wall of human iris vessels. Z Zellforsch Mikrosk Anat 94:19–31.

    Article  PubMed  CAS  Google Scholar 

  209. Virchow R (1858) Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre. Hirschwald, Berlin.

    Google Scholar 

  210. Wagner DD, Olmsted JB, Marder VJ (1982) Immunolocalization of von Willebrand protein in Weibel-Palade-bodies of human endothelial cells. J Cell Biol 95:355–360.

    Article  PubMed  CAS  Google Scholar 

  211. Wagner RC, Casley-Smith (1981) Endothelial vesicles. Microvasc Res 21:267–298.

    Article  PubMed  CAS  Google Scholar 

  212. Weibel ER, Palade GE (1964) New cytoplasmic components in arterial endothelia. J Cell Biol 23:101–112.

    Article  PubMed  CAS  Google Scholar 

  213. Weksler BB, Knapp JM, Jaffe EA (1977) Prostacyclin (PGI2) synthesized by cultured endothelial cells modulates polymorphonuclear leucocyte function. Blood [Suppl 1] 50:287.

    Google Scholar 

  214. Weksler BB, Ley CN, Jaffe EA (1978) Stimulation of endothelial cell prostacyclin production by thrombin, trypsin and the ionophore A 23187. J Clin Invest 62:923–930.

    Article  PubMed  CAS  Google Scholar 

  215. Wight TN, Roos R (1975) Proteoglycans in primate arteries. I. Ultrastructural localisation and distribution in the intima. J Cell Biol 67:660–674.

    Article  PubMed  CAS  Google Scholar 

  216. Wolinsky H (1980) A proposal linking clearance of circulating lipoproteins to tissue metabolic activity as a basis for understanding atherogenesis. Circ Res 47:301–311.

    PubMed  CAS  Google Scholar 

  217. Wusteman FS (1983) The involvement of glycosaminoglycans at the endothelium. In: Cryer A (ed) Biochemical interactions at the endothelium. Elsevier, mNew York Oxford, p 79.

    Google Scholar 

  218. Yamada KM, Yamada SS, Pastan I (1976) Cell surface protein restores morphology, adhesiveness and contact inhibition of movement to transformed fibroblasts. Proc Natl Acad Sci USA 73:1219–1221.

    Article  Google Scholar 

  219. Zawadzki JV, Furchgott RF, Cherry P (1981) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by substance P (Abstract). Fed Proc 40:689.

    Google Scholar 

  220. Zeidman I (1957) Metastasis: A review of recent advances. Cancer Res 17:157–162.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nees, S. (1985). Das vaskuläre Endothel und seine Bedeutung im Rahmen pathobiologischer Prozesse. In: Martin, E., Jesch, F., Peter, K. (eds) Anaesthesiologische Probleme in der Gefäßchirurgie. Anaesthesiologie und Intensivmedizin Anaesthesiology and Intensive Care Medicine, vol 177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70475-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70475-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15408-2

  • Online ISBN: 978-3-642-70475-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics