Skip to main content

Neuroethological Studies of Associative Learning in Feeding Control Systems

  • Conference paper
Neuroethology and Behavioral Physiology

Abstract

The neural control systems for feeding behavior typically contain a neural microprocessor which directs the initial appetitive phase of locating and evaluating potential sources of metabolic energy. A number of the subroutines called up during this appetitive phase are modifiable based on the animal’s previous experience. Learning about the location of food patches or the times of day when foraging in a particular food patch will yield optimal energetic return are examples of modifiable subroutines. Another example, which is particularly well suited to ethological and neurophysiological analysis, is the subroutine for evaluating novel foods, using post-ingestional consequences of the initial meal to bias the probability of ingestion on subsequent encounters. An exceedingly rich literature documents the operation of this particular learning mechanism among all classes of vertebrates (Seligman and Hager 1972, Garcia et al. 1983). Recent work with several insect and molluscan systems indicates that the food evaluation subroutine within the neural control system for feeding may yield particularly robust learning under conditions where a variety of biophysical and biochemical tools can be brought to bear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alkon D (1981) Membrane depolarization accumulates during acquisition of an associative behavioral change. Science 210: 1375–1376

    Article  Google Scholar 

  • Alkon D, Farley J (eds) (1983) Primary neural substrates of learning and behavioral change. Cambridge Univ Press, New York (in press)

    Google Scholar 

  • Barry SR, Gelperin A (1982a) Dietary choline augments blood choline and cholinergic transmission in the terrestrial mollusc, Limax maximus. J Neurophysiol 48: 451–457

    CAS  PubMed  Google Scholar 

  • Barry SR, Gelperin A (1982b) Exogenous choline augments transmission at an identified cholinergic synapse in the terrestrial mollusc, Limax maximus. J Neurophysiol 48: 439–450

    CAS  PubMed  Google Scholar 

  • Bartus RI, Dean RL, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217: 408–417

    Article  CAS  PubMed  Google Scholar 

  • Beiswanger SM, Sokolove PG, Prior DJ (1981) Extraocular photoentrainment of the circadian locomotor rhythm of the garden slug Limax. J Exp Zool 216: 13–23

    Article  Google Scholar 

  • Beltz B, Gelperin A (1980a) Mechanosensory inputs modulate the activity of salivary and feeding neurons in Limax maximus. J Neurophysiol 44: 665–674

    CAS  PubMed  Google Scholar 

  • Beltz B, Gelperin A (1980b) Mechanisms of peripheral modulation of salivary and feeding neurons in Limax maximus: A presumptive sensory-motor neuron. J Neurophysiol 44: 675–686

    CAS  PubMed  Google Scholar 

  • Beltz B, Kravitz EA (1983) Mapping of serotonin-like immunoreactivity in the lobster nervous system. J Neurosci 3: 585–602

    CAS  PubMed  Google Scholar 

  • Carew TJ, Walters ET, Kandel ER (1981) Classical conditioning in a simple withdrawal reflex in Aplysia californica. J Neurosci 1: 1426–1437

    CAS  PubMed  Google Scholar 

  • Cates RG (1975) The interface between slugs and wild ginger: some evolutionary aspects. Ecology 56: 391–400

    Article  Google Scholar 

  • Cates RG, Orians GH (1975) Successional status and the palatability of plants to generalized herbivores. Ecology 56: 410–418

    Article  Google Scholar 

  • Chang JJ, Gelperin A (1980) Rapid taste-aversion learning by an isolated molluscan central nervous system. Proc Natl Acad Sci USA 77: 6204–6206

    Article  CAS  PubMed  Google Scholar 

  • Cohen EL, Wurtman RJ (1976) Brain acetylcholine: Control by dietary choline. Science 205: 1039–1040

    Google Scholar 

  • Cole S, Hainsworth FR, Kamil AC, Mercier T, Wolf LL (1982) Spatial learning as an adaptation in hummingbirds. Science 217: 655–657

    Article  CAS  PubMed  Google Scholar 

  • Copeland J, Gelperin A (1983) Feeding and a serotonergic interneuron activate an identified auto-active salivary neuron in Limax maximus. Comp Biochem Physiol 76: 21–30

    Article  Google Scholar 

  • Corkin S (1981) Acetylcholine, aging and Alzheimer’s disease. Trend Neurosci 4: 287–290

    Article  CAS  Google Scholar 

  • Cottrell GA, Osborne NN (1970) Serotonin: Subcellular localization in an identified serotonincontaining neuron. Nature 225: 470–472

    Article  CAS  PubMed  Google Scholar 

  • Culligan N, Gelperin A (1983) One-trial associative learning by an isolated molluscan CNS: Use of different chemoreceptors for training and testing. Brain Res 266: 319–327

    Article  CAS  PubMed  Google Scholar 

  • Davis WJ, Villet J, Lee D, Rigler M, Gillette R, Prince E (1980) Selective and differential avoidance learning in the feeding and withdrawal behavior of Pleurobranchaea californica. J Comp Physiol 138: 157–165

    Article  Google Scholar 

  • Dethier VG (1980) Food-aversion learning in two polyphagous caterpillars, Diacrisia virginica and Estigmene congrua. Physiol Ent 5: 321–325

    Article  Google Scholar 

  • Dethier VG, Yost MT (1979) Oligophagy and absence of food-aversion learning in tobacco horn-worms Manduca sexta. Physiol Ent 4: 125–130

    Article  Google Scholar 

  • Dickinson A, Mackintosh NJ (1979) Classical conditioning in animals. Ann Rev Psychol 29: 287–312

    Google Scholar 

  • Duerr JS, Quinn WG (1982) Three Drosophila mutations that block associative learning also affect habituation and sensitization. Proc Natl Acad Sci USA 79: 3646–3650

    Article  CAS  PubMed  Google Scholar 

  • Egan M, Gelperin A (1981) Olfactory inputs to a bursting serotonergic interneuron in a terrestrial mollusc. J Molluscan Stud 47: 80–88

    Google Scholar 

  • Farley J, Alkon D (1980) Neural organization predicts stimulus specificity for a retained associative behavioral change. Science 210: 1373–1375

    Article  CAS  PubMed  Google Scholar 

  • Främming E (1952) Ãœber die Nahrung von Limax maximus. Anz Schädlingskde 25: 41–43

    Article  Google Scholar 

  • Gain WA (1891) Notes on the food of some of the British mollusks. J Conchol 6: 349–361

    Google Scholar 

  • Garcia J, Forthman D, White B (1983) Conditioned disgust and fear from mollusk to monkey. In: Alkon DL, Farley J (eds) Primary neural substrates of learning and behavioral change. Cambridge Univ Press, New York (in press)

    Google Scholar 

  • Gelperin A (1971) Abdominal sensory neurons providing negative feedback to the feeding behavior of the blowfly. Z Vergl Physiol 72: 17–31

    Article  Google Scholar 

  • Gelperin A (1972) Neural control systems underlying insect feeding behavior. Am Zool 12: 489–496

    Google Scholar 

  • Gelperin A (1974) Olfactory basis of homing behavior in the giant garden slug, Limax maximus. Proc Natl Acad Sci USA 71: 966–970

    Article  CAS  PubMed  Google Scholar 

  • Gelperin A (1975) Rapid food-aversion learning by a terrestrial mollusk. Science 189: 567–570

    Article  CAS  PubMed  Google Scholar 

  • Gelperin A (1981) Synaptic modulation by identified serotonin neurons. In: Jacobs B, Gelperin A (eds) Serotonin Neurotransmission and Behavior. MIT Press, Cambridge, pp 288–304

    Google Scholar 

  • Gelperin A, Culligan N (1982) In vitro expression of in vivo learning by the cerebral ganglia of the terrestrial mollusc Limax maximus. Soc Neurosci Abstr 8: 823

    Google Scholar 

  • Gelperin A, Culligan N (1983) In vitro expression of in vivo learning by an isolated molluscan CNS (submitted)

    Google Scholar 

  • Gelperin A, Forsythe D (1976) Neuroethological studies of learning in mollusks. In: Fentress JC (ed) Simpler networks: an approach to patterned behaviour and its foundations. Chap 16. Sinauer, Sunderland Mass, pp 239–246

    Google Scholar 

  • Gelperin A, Chang JJ, Reingold SC (1978) Feeding motor program in Limax. I. Neuromuscular correlates and control by chemosensory input. J Neurobiol 9: 285–300

    Article  CAS  PubMed  Google Scholar 

  • Goldberg AM, McCaman RD (1974) An enzymatic method for the determination of picomole amounts of choline and acetylcholine. In: Hanin I (ed) Choline and acetylcholine: handbook of chemical assay methods. Raven Press, New York, pp 47–61

    Google Scholar 

  • Hassell MD, Southwood THE (1978) Foraging strategies of insects. Ann Rev Ecol Syst 9: 75–98

    Article  Google Scholar 

  • Haubrich DR, Wang PFL, Chippendale T, Proctor E (1976) Choline and acetylcholine in rats: Effect of dietary choline. J Neurochem 27: 1305–1313

    Article  CAS  PubMed  Google Scholar 

  • Hökfelt T, Fuxe IT, Goldstein M (1975) Applications of immunohistochemistry to studies on monoamine cell systems with special reference to nervous tissues. Ann NY Acad Sci 254:407–437

    Article  PubMed  Google Scholar 

  • Kamin LJ (1969) Predictability, surprise, attention, and conditioning. In: Church R, Campbell BA (eds) Punishment and aversive behavior. Appleton Century Crofts, New York, pp 279–296

    Google Scholar 

  • Kaneko CRS, Merickel M, Kater SB (1978) Centrally programmed feeding in Helisoma: Identification and characteristics of an electrically coupled premotor neuron network. Brain Res 146: 1–21

    Article  CAS  PubMed  Google Scholar 

  • Kittel R (1956) Untersuchungen über den Geruchs-and Geschmackssinn bei den GattungenArion and Limax. Zool Anz 157: 185–195

    Google Scholar 

  • Krebs JR, Houston AI, Charnov EL (1981) Some recent developments in optimal foraging. In: Kamil AC, Sargent TD (eds) Foraging behavior. Garland STPM Press, New York, pp 3–18

    Google Scholar 

  • Lux HD, Neher E, Marty A (1981) Single channel activity associated with the calcium dependent outward current in Helix pomatia. Pflügers Archiv 389: 293–295

    Article  CAS  PubMed  Google Scholar 

  • Mefford IN (1981) Application of high performance liquid chromatography with electrochemical detection to neurochemical analysis: measurement of catecholamines, serotonin and metabolites in rat brain. J Neurosci Methods 3: 207–224

    Article  CAS  PubMed  Google Scholar 

  • Neher E, Sakmann B, Steinbach JH (1978) The extracellular patch clamp: A method for resolving currents through individual open channels in biological membranes. Pflügers Arch 375: 219–228

    Article  CAS  PubMed  Google Scholar 

  • Orians G (1981) Foraging behavior and the evolution of discriminatory abilities. In: Kamil AC, Sargent TD (eds) Foraging behavior. Garland STPM Press, New York, pp 398–405

    Google Scholar 

  • Osborne NN, Cottrell GA (1971) Distribution of biogenic amines in the slug Limax maximus. Z Zellforsch 112: 15–30

    Article  CAS  PubMed  Google Scholar 

  • Prior D, Gelperin A (1977) Autoactive molluscan neuron: Reflex function and synaptic modulation during feeding in the terrestrial slug Limax maximus. J Comp Physiol 114: 217–232

    Article  Google Scholar 

  • Pyke GH, Pulliam HR, Charnov EL (1977) Optimal foraging: a selective review of theories and tests. Q Rev Biol 52: 137–154

    Article  Google Scholar 

  • Reingold SR, Gelperin A (1980) Feeding motor program in Limax. II. Modulation by sensory inputs in intact animals and isolated central nervous system. J Exp Biol 85: 1–19

    CAS  PubMed  Google Scholar 

  • Rescorla R (1983) Comments on three Pavlovian paradigms. In: Alkon D, Farley J (eds) Primary neural substrates of learning and behavioral change. Cambridge Univ Press, New York (in press)

    Google Scholar 

  • Roeder KD (1967) Nerve cells and insect behavior. Harvard Univ Press, Cambridge

    Google Scholar 

  • Rollo CD (1982) The regulation of activity in populations of the terrestrial slug Limax maximus. Res Popul Ecol 24: 1–32

    Article  Google Scholar 

  • Rollo CD, Wellington WG (1981) Environmental orientation by terrestrial Mollusca with particular reference to homing behaviour. Can J Zool 59: 225–239

    Article  Google Scholar 

  • Rose RM, Benjamin PR (1981a) Interneuronal control of feeding in the pond snail Lymnaea stagnalis. I. Initiation of feeding cycles by a single buccal intemeurone. J Exp Biol 92: 187–201

    Google Scholar 

  • Rose RM, Benjamin PR (198lb) Interneuronal control of feeding in the pond snail Lymnaea stagnalis. II. The interneuronal mechanism generating feeding cycles. J Exp Biol 92:203–228

    Google Scholar 

  • Sahley CL, Feinstein SR, Gelperin A (1981a) Dietary choline increases retention of an associative learning task in the terrestrial mollusc Limax maximus. Soc Neurosci Absts 7: 353

    Google Scholar 

  • Sahley CL, Gelperin A, Rudy JW (1981b) One-trial associative learning modifies food odor preferences of a terrestrial mollusc. Proc Natl Acad Sci USA 78: 640–642

    Article  CAS  Google Scholar 

  • Sahley CL, Rudy JW, Gelperin A (1981c) An analysis of associative learning in a terrestrial mollusc: Higher-order conditioning, blocking and a transient US pre-exposure effect. J Comp Physiol 144: 1–8

    Article  Google Scholar 

  • Sahley CL, Hardison P, Hsuan A, Gelperin A (1982) Appetitively reinforced odor-conditioning modulates feeding in Limax maximus. Soc Neurosci Abstr 8: 823

    Google Scholar 

  • Sahley CL, Barry SR, Gelperin A (1983a) Dietary choline augments associative memory function in Limax maxim us (in preparation)

    Google Scholar 

  • Sahley CL, Rudy JW, Gelperin A (1983b) Associative learning in a mollusc: A comparative analysis. In: Alkon D, Farley J (eds) Primary neural substrates of learning and behavioral change. Cambridge Univ Press, New York (in press)

    Google Scholar 

  • Scheller RH, Jackson JF, McAllister LB, Schwartz JH, Kandel ER, Axel R (1982) A family of genes that codes for ELH, a neuropeptide eliciting a stereotyped pattern of behavior in Aplysia. Cell 28: 707–719

    Article  CAS  PubMed  Google Scholar 

  • Seligman MEP, Hager JL (eds) (1972) Biological boundaries of learning. Appleton Century Crofts, New York

    Google Scholar 

  • Senseman D (1978) Short-term control of food intake by the terrestrial slug Ariolimax. J Comp Physiol 124: 37–48

    Article  Google Scholar 

  • Sokolove PG, Beiswanger CM, Prior DJ, Gelperin A (1977) A circadian rhythm in the locomotor behavior of Limax maximus. J Exp Biol 66: 47–64

    CAS  PubMed  Google Scholar 

  • Sokolove PG, Kirgan J, Tan R (1981) Red light insensitivity of the extraocular pathway for photo-periodic stimulation of reproductive development in the slug, Limax maximus. J Exp Zool 215: 219–223

    Article  Google Scholar 

  • Tully T (1982) Classical conditioning in wild-type and mutant strains of Drosophila. Behavior Genetics 12: 599–600

    Google Scholar 

  • Van Minnen J, Sokolove PG (1981) Neurosecretory cells in the central nervous system of the giant garden slug, Limax maximus. J Neurobiol 12: 297–301

    Article  PubMed  Google Scholar 

  • Walters ET, Carew TJ, Kandel ER (1981) Associative learning in Aplysia. Evidence for conditioned fear in an invertebrate. Science 211: 504–506

    Article  CAS  PubMed  Google Scholar 

  • Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, DeLong MR (1982) Alzheimer’s disease and senile dementia: Loss of neurons in the basal forebrain. Science 215: 1237–1239

    Article  CAS  PubMed  Google Scholar 

  • Wieland SJ, Gelperin A (1983) Dopamine elicits feeding motor program in Limax maximus. J Neurosci 3:No. 9

    Google Scholar 

  • Wurtman RJ (1982) Nutrients that modify brain function. Sci Am 246: 50–59

    Article  CAS  PubMed  Google Scholar 

  • Zahorik DM, Houpt KA (1981) Species differences in feeding strategies, food hazards, and the ability to learn food aversions. In: Kamil AC, Sargent TD (eds) Foraging behavior. Garland STPM Press, New York, pp 289–310

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gelperin, A. (1983). Neuroethological Studies of Associative Learning in Feeding Control Systems. In: Huber, F., Markl, H. (eds) Neuroethology and Behavioral Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69271-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69271-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69273-4

  • Online ISBN: 978-3-642-69271-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics