Skip to main content

Synthesis, Integration, and Transcription of the Retroviral Provirus

  • Chapter
Retroviruses 1

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 103))

Abstract

The RNA genome of a retrovirus is copied into DNA by the viral enzyme, RNA-dependent DNA polymerase, and the DNA copy of the retrovirus genome is inserted into one of the host’s chromosomes. This DNA copy, called a provirus, is transcribed into RNA by host enzymes, giving rise to both viral genomic RNA and viral messenger RNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allet B (1979) Mu insertion duplicates a 5 base pair sequence at the host inserted site. Cell 16: 123–129

    PubMed  CAS  Google Scholar 

  • Amer CA, Parsons JT, Faras AJ (1981) Direct proof of the 5’ to 3’ transcriptional jump during reverse transcriptase of the avian retrovirus genome by DNA sequencing. J Virol 38: 398–402

    Google Scholar 

  • Bacheler LT, Fan H (1979) Multiple integration sites for Moloney murine leukemia virus in productively infected mouse fibroblasts. J Virol 30: 657–667

    PubMed  CAS  Google Scholar 

  • Baltimore D, Smoler D (1971) Primer requirement and template specificity of the DNA polymerase of RNA tumor viruses. Proc Natl Acad Sci USA 68: 1507–1511

    PubMed  CAS  Google Scholar 

  • Baltimore D, Gilboa E, Rothenberg E, Yoshimura F (1979) Production of a discrete, infectious double-stranded DNA by reverse transcription in virions of Moloney mutine leukemia virus. Cold Spring Harbor Symp Quant Biol 43: 869–874

    PubMed  CAS  Google Scholar 

  • Baluda M (1972) Widespread presence, in chickens, of DNA complementary to the RNA genome of avian leukosis viruses. Proc Natl Acad Sci USA 69: 576–580

    PubMed  CAS  Google Scholar 

  • Bandyopadhyay AK, Levy CC (1978) Effect of RNA tumor virus-specific protein p30 on reverse transcriptase. Intraspecies and interspecies interaction between reverse transcriptase and p30. J Biol Chem 253: 8285–8290

    PubMed  CAS  Google Scholar 

  • Banerji J, Rusconi S, Schaffner W (1981) Expression of a ß-globin gene is enhanced by remote SV40 DNA sequences. Cell 27: 299–308

    PubMed  CAS  Google Scholar 

  • Beemon KL, Faras A, Haase A, Duesberg P, Masel J (1976) Genomic complexities of murine leukemia and sarcoma, reticulendotheliosis and visna viruses. J Virol 17: 525–537

    PubMed  CAS  Google Scholar 

  • Bender W, Davidson N (1976) Mapping of poly(A) sequences in the electron microscope reveals unusual structure of type 1 oncornavirus RNA molecules. Cell 7: 595–607

    PubMed  CAS  Google Scholar 

  • Benz EW Jr, Dina D (1979) Moloney murine sarcoma virions synthesize full-genome-length double-stranded DNA in vitro. Proc Natl Acad Sci USA 76: 3294–3298

    PubMed  CAS  Google Scholar 

  • Bergmann DG, Souza LM, Baluda MA (1980) Characterization of avian myeloblastosis-associated virus DNA intermediates. J Virol 34: 366–372

    PubMed  CAS  Google Scholar 

  • Berkower AS, Lilly F, Soeiro R (1980) Expression of viral RNA in Friend virus-induced erythroleukemia cells. Cell 19: 637–642

    PubMed  CAS  Google Scholar 

  • Blair DG, McClements WL, Oskarsson MK, Fischinger PJ, Van de Woude GF (1980) Biological activity of cloned Moloney sarcoma virus DNA: terminally redundant sequences may enhance transformation efficiency. Proc Natl Acad Sci USA 77: 3504–3508

    PubMed  CAS  Google Scholar 

  • Boone LR, Skalka A (1980) Two species of full-length cDNA are synthesized in high yield by melittin-treated avian retrovirus particles. Proc Natl Acad Sci USA 77: 847–851

    PubMed  CAS  Google Scholar 

  • Boone LR, Skalka A (1981) Viral DNA synthesized in vitro by avian retrovirus particles permeabilized with melittin. II. Evidence for a strand displacement mechanism in plus-strand synthesis. J Virol 37: 117–126

    PubMed  CAS  Google Scholar 

  • Bosselman RA, Venena IM (1980) Genome organization of retroviruses. V. In vitro-synthesized Moloney murine leukemia viral DNA has long terminal redundancy. J Virol 33: 487–493

    Google Scholar 

  • Calos MP, Miller JH (1980) Transposable elements. Cell 20: 579–595

    PubMed  CAS  Google Scholar 

  • Cameron J, Loh E, Davis R (1979) Evidence for transposition of dispersed repetitive DNA families in yeast. Cell 16: 739–751

    PubMed  CAS  Google Scholar 

  • Canaani E, Aaronson SA (1979) Restriction enzyme analysis of mouse cellular type C viral DNA: emergence of new viral sequences in spontaneous AKRJ lymphomas. Proc Natl Acad Sci USA 76: 1677–1681

    PubMed  CAS  Google Scholar 

  • Canaani E, von der Helm K, Duesberg P (1973) Evidence for 30–40s RNA as a precursor of the 60–70s RNA of Rous sarcoma virus. Proc Natl Acad Sci USA 70: 401–405

    PubMed  CAS  Google Scholar 

  • Chang EH, Maryak JM, Wei CM, Shih TY, Shober R, Cheung HL, Ellis RW, Hager GL, Scolnick EM, Lowy DR (1980) Functional organization of the Harvey murine sarcoma virus genome. J Virol 35: 76–92

    PubMed  CAS  Google Scholar 

  • Chen ISY, Temin HM (1980) Ribonucleotides in unintegrated linear spleen necrosis virus DNA. J Virol 33: 1058–1073

    PubMed  CAS  Google Scholar 

  • Chow LT, Bukhari AI (1977) In: Bukhari AI, Shapiro JA, Adhya SL (eds) DNA insertion elements, plasmids and episomes, Cold Spring Harbor Laboratory, New York, pp 295–306

    Google Scholar 

  • Coffin JM, Temin HM (1972) Hybridization of Rous sarcoma virus deoxyribonucleic acid polymerase product and ribonucleic acids from chicken and rat cells infected with Rous sarcoma virus. J Virol 9: 766–775

    PubMed  CAS  Google Scholar 

  • Coffin JM, Hageman TC, Maxam AM, Haseltine WA (1978) Structure of the genome of Moloney murine leukemia virus: A terminally redundant sequence. Cell 13: 761–773

    PubMed  CAS  Google Scholar 

  • Cohen JC, Shank PR, Morris VL, Cardiff R, Varmus HE (1979) Integration of the DNA of mouse mammary tumor virus in virus-infected normal and neoplastic tissue of the mouse. Cell 16: 333–346

    PubMed  CAS  Google Scholar 

  • Cohen M, Davidson N, Gilden RV, McAllister RM, Nicolson M, Stephens R (1980) The baboon endogenous virus genome. H. Provirus sequence variations in baboon cell DNA. Nucleic Acids Res 8: 4423–4440

    PubMed  CAS  Google Scholar 

  • Cohen M, Rein A, Stephens R, O’Connell C, Gilden R, Shure M, Nicolson M, McAllister R, Davidson N (1981) Baboon endogenous virus genome: molecular cloning and structural characterization of nondefective viral genomes from DNA of a baboon cell strain. Proc Natl Acad Sci USA 78: 5207–5211

    PubMed  CAS  Google Scholar 

  • Collett MS, Dierks P, Parsons JT, Faras AJ (1978) RNase H hydrolysis of the 5’ terminus of the avian sarcoma virus genome during reverse transcription. Nature 272: 181–183

    PubMed  CAS  Google Scholar 

  • Cooper GM, Okenquist S (1978) Mechanism of transfection of chicken embryo fibroblasts by Rous sarcoma virus DNA. J Virol 28: 45–52

    PubMed  CAS  Google Scholar 

  • Cooper GM, Silverman L (1978) Linkage of the endogenous avian leukosis virus genome of virus-producing chicken cells to inhibitory cellular DNA sequences. Cell 15: 573–577

    PubMed  CAS  Google Scholar 

  • Cooper GM, Temin H (1976) Lack of infectivity of the endogenous avian leukosis virus-related genes in the DNA of uninfected chicken cells. J Virol 17: 422–430

    PubMed  CAS  Google Scholar 

  • Copeland NG, Jenkins NA, Cooper GM (1981) Integration of Rous sarcoma virus DNA during transfection. Cell 23: 51–60

    PubMed  CAS  Google Scholar 

  • Cordell B, Weiss SR, Varmus HE, Bishop JM (1978) At least 104 nucleotides are transposed from the 5’ terminus of the avian sarcoma virus genome to the 5’ termini of smaller viral mRNAs. Cell 15: 79–91

    PubMed  CAS  Google Scholar 

  • Crittenden LB, Smith EJ, Weiss RA, Sarma PS (1974) Host gene control of endogenous avian leukosis virus production. Virology 57: 128–138

    PubMed  CAS  Google Scholar 

  • Darlix JL, Bromley PA, Spahr PF (1977) Extensive in vitro transcription of Rous sarcoma virus RNA by avian myeloblastosis virus DNA polymerase and concurrent activation of the associated RNase H. J Virol 23: 659–668

    PubMed  CAS  Google Scholar 

  • DeLorbe WJ, Luciw PA, Goodman HM, Varmus HE, Bishop JM (1980) Molecular cloning and characterization of avian sarcoma virus circular DNA molecules. J Virol 36: 50–61

    PubMed  CAS  Google Scholar 

  • Dhar R, McClements WL, Enquist LW, Vande Woude GF (1980) Nucleotide sequences of integrated Moloney sarcoma provirus long terminal repeats and their host and viral junctions. Proc Natl Acad Sci USA 77: 3937–3941

    PubMed  CAS  Google Scholar 

  • Dina D, Benz EM Jr (1980) Structure of murine sarcoma virus DNA replicative intermediates synthesized in vitro. J Virol 33: 377–389

    PubMed  CAS  Google Scholar 

  • Donehower LA, Huang AL, Hager GL (1981) Regulatory and coding potential of the mouse mammary tumor virus long terminal redundancy. J Virol 37: 226–238

    PubMed  CAS  Google Scholar 

  • Donner L, Turek LP, Ruscetti SK, Fedele LA, Shen CJ (1980) Transformation-defective mutants of feline sarcoma virus which express a product of the viral srcgene. J Virol 35: 129–140

    PubMed  CAS  Google Scholar 

  • Dunsmuir P, Brorein W, Simon M, Rubin GM (1980) Insertion of the Drosophila transposable element copiagenerates a 5 base pair duplication. Cell 21: 575–579

    PubMed  CAS  Google Scholar 

  • Errede B, Cardillo TS, Sherman F, Duboi E, Deschamps J, Wiame JM (1980) Mating signals control expression of mutations resulting from insertions of transposable repetitive elements adjacent to diverse yeast genes. Cell 22: 427–436

    PubMed  CAS  Google Scholar 

  • Farabaugh PJ, Fink GR (1980) Insertion of the eukaryotic transposable element TY-1 creates a 5 base pair duplication. Nature 286: 352–356

    PubMed  CAS  Google Scholar 

  • Faras AJ, Dibble NA (1975) RNA-directed DNA synthesis by the DNA polymerase of Rous sarcoma virus: structural and functional identification of 4S primer RNA in uninfected cells. Proc Nail Acad Sci USA 72: 859–863

    CAS  Google Scholar 

  • Faras AJ, Garapin A, Levinson W, Bishop JM, Goodman DM (1973) Characterization of the lowmolecular-weight RNAs associated with the 70s RNA of Rous sarcoma virus. J Virol 12: 334–342

    PubMed  CAS  Google Scholar 

  • Flavell A, Ish-Horowicz D (1981) Extrachromosal circular copies of the eukaryotic transposable element copiain cultured Drosophila cells. Nature 292: 591–595

    PubMed  CAS  Google Scholar 

  • Friedrich R, Moelling K (1979) Effect of viral RNase Hon the avian sarcoma viral genome during early transcription in vitro. J Virol 31: 630–638

    PubMed  CAS  Google Scholar 

  • Fritsch E, Temin HM (1977a) Formation and structure of infectious DNA of spleen necrosis virus. J Virol 21: 119–130

    CAS  Google Scholar 

  • Fritsch E, Temin HM (1977b) Inhibition of viral DNA synthesis in stationary chicken embryo fibroblasts infected with avian retroviruses. J Virol 24: 461–469

    CAS  Google Scholar 

  • Fuhrman SA, Van Beveren C, Verma J (1981) Identification of a RNA polymerase II initiation site in the long terminal repeat of Moloney murine leukemia viral DNA. Proc Natl Acad Sci USA 78: 5411–5415

    PubMed  CAS  Google Scholar 

  • Furiuchi Y, Shatkin AJ, Stavneyer E, Bishop JM (1975) Blocked, methylated 5’ terminal sequence in avian sarcoma virus RNA. Nature 257: 618–620

    Google Scholar 

  • Gafner J, Phillipsen P (1980) The yeast transposon TY-1 generates duplications of target DNA on insertion. Nature 286: 414–418

    PubMed  CAS  Google Scholar 

  • Gautsch JW, Elder JH, Schindler J, Jensen FC, Lerner RA (1978) Structural markers on core protein p30 of murine leukemia virus: functional correlation with Fv-1 tropism. Proc Nail Acad Sci USA 75: 4170–4174

    CAS  Google Scholar 

  • Gilboa E, Goff S, Shields A, Yoshimura F, Mitra S, Baltimore D (1979a) In vitro synthesis of a 9-kbp terminally redundant DNA carrying the infectivity of Moloney murine leukemia virus. Cell 16: 863–874

    CAS  Google Scholar 

  • Gilboa E, Mitra SW, Goff S, Baltimore D (1979b) A detailed model of reverse transcription and tests of crucial aspects. Cell 18: 93–100

    CAS  Google Scholar 

  • Gilmer T, Parsons JT (1979) Analysis of cellular integration sites in avian sarcoma virus-infected duck embryo cells. J Virol 32: 762–770

    PubMed  CAS  Google Scholar 

  • Goodman NC, Spiegelman S (1971) Distinguishing reverse transcriptase of an RNA tumor virus from other known DNA polymerases. Proc Nat ’ Acad Sci USA 68: 2203–2206

    CAS  Google Scholar 

  • Goubin G, Hill M (1979) Monomer and multimer covalently closed circular forms of Rous sarcoma virus DNA. J Virol 29: 799–804

    PubMed  CAS  Google Scholar 

  • Groudine M, Eisenman R, Weintraub H (1981) Chromatin structure of endogenous retroviral genes and activation of an inhibitor of DNA methylation. Nature 292: 311–317

    PubMed  CAS  Google Scholar 

  • Guntaka RV (1980) Synthesis of circular DNA in avian tumor virus particles. Virology 101: 525–528

    PubMed  CAS  Google Scholar 

  • Guntaka RV, Richards OC, Shank PR, Kung HJ, Davidson N, Fritsch E, Bishop JM, Varmus HE (1976) Covalently closed circular DNA of avian sarcoma virus: purification from nuclei of infected quail tumor cells and measurement by electron microscopy and gel electrophoresis. J Mol Biol 106: 337–357

    PubMed  CAS  Google Scholar 

  • Harbers K, Schnieke A, Stuhlmann H, Jahner D, Jaenisch R (1981) DNA methylation and gene expression: endogenous retroviral genome becomes infectious after molecular cloning. Proc Nail Acad Sci USA 78: 7609–7613

    CAS  Google Scholar 

  • Hager GL, Chang EH, Chan HW, Garon CF, Israel MA, Martin MA, Scolnick EM, Lowy DR (1979) Molecular cloning of the Harvey sarcoma virus closed circular DNA intermediates: initial structural and biological characterization. J Virol 31: 795–809

    PubMed  CAS  Google Scholar 

  • Harada F, Sawyer RC, Dahlberg JE (1975) A primer ribonucleic acid for initiation of in vitro Rous sarcoma virus deoxyribonucleic acid synthesis. Nucleotide sequence and amino acid acceptor activity. J Biol Chem 250: 3487–3497

    PubMed  CAS  Google Scholar 

  • Harada F, Peters GG, Dahlberg JE (1979) The primer tRNA for Moloney murine leukemia virus DNA synthesis. Nucleotide sequence and aminoacylation of tRNA. J Biol Chem 254: 10979–10985

    PubMed  CAS  Google Scholar 

  • Haseltine WA, Maxam AM, Gilbert W (1977) Rous sarcoma virus genome is terminally redundant: the 5’ sequence. Proc Natl Acad Sci USA 74: 989–993

    PubMed  CAS  Google Scholar 

  • Haseltine WA, Coffin JM, Hageman TC (1979) Structure of products of the Moloney mutine leukemia virus endogenous DNA polymerase reaction. J Virol 30: 375–383

    PubMed  CAS  Google Scholar 

  • Hayward WS (1977) Size and genetic content of viral RNAs in avian oncovirus-infected cells. J Virol 24: 47–63

    PubMed  CAS  Google Scholar 

  • Hayward WS, Braverman SB, Astrin SM (1980) Transcriptional products and DNA structure of endogenous avian proviruses. Cold Spring Harbor Symp Quant Biol 44: 1111–1121

    PubMed  CAS  Google Scholar 

  • Hayward WS, Neel BG, Astrin S (1981) Activation of a cellular onegene by promoter insertion in ALV-induced lymphoid leukosis. Nature 290: 475–480

    PubMed  CAS  Google Scholar 

  • Hill M, Hillova J (1972a) Virus recovery in chicken cells tested with Rous sarcoma cell DNA. Nature 237: 35–39

    CAS  Google Scholar 

  • Hill M, Hillova J (1972b) Recovery of the temperature-sensitive mutant of Rous sarcoma virus from chicken cells exposed to DNA extracted from hamster cells transformed by the mutant. Virology 49: 309–313

    CAS  Google Scholar 

  • Hishinuma F, DeBona PJ, Astrin S, Skalka AM (1981) Nucleotide sequence of acceptor site and termini of integrated avian endogenous provirus ev-1: integration creates a 6 bp repeat of host DNA. Cell 23: 155–164

    PubMed  CAS  Google Scholar 

  • Hopkins N, Schindler J, Hynes R (1977) Six NB-tropic murine leukemia viruses derived from a B-tropic virus of BALB/c have altered p30. J Virol 21: 309–318

    PubMed  CAS  Google Scholar 

  • Hsu TW, Sabran JL, Mark GE, Guntaka RV, Taylor JM (1978) Analysis of unintegrated avian RNA tumor virus double-stranded DNA intermediates. J Virol 28: 810–819

    PubMed  CAS  Google Scholar 

  • Hughes SH (1982) The sequence of the LTR and adjacent segments of the endogenous virus RAV-0. J Virol 43: 191–200

    PubMed  CAS  Google Scholar 

  • Hughes SH, Shank PR, Spector DH, Kung HJ, Bishop JM, Varmus HE, Vogt PK, Breitman ML (1978) Proviruses of avian sarcoma virus are terminally redundant co-extensive with unintegrated linear DNA and integrated at many sites. Cell 15: 1397–1410

    PubMed  CAS  Google Scholar 

  • Hughes SH, Mutschler A, Bishop JM, Varmus HE (1981a) Rous sarcoma virus provirus is flanked by short direct repeats of a cellular DNA sequence present in only one copy prior to integration. Proc Natl Acad Sci USA 78: 4299–4303

    CAS  Google Scholar 

  • Hughes SH, Toyoshima K, Bishop JM, Varmus HE (1981b) Organization of the endogenous proviruses of chickens: implications for origin and expression. Virology 108: 189–207

    CAS  Google Scholar 

  • Hughes SH, Vogt PK, Stubblefield E, Bishop JM, Varmus HE (1981c) Integration of avian sarcoma virus DNA in chicken cells. Virology 108: 208–221

    CAS  Google Scholar 

  • Hurwitz J, Leis JP (1972) RNA-dependent DNA polymerase activity of RNA tumor viruses. I. Directing influence of DNA in the reaction. J Virol 9: 116–129

    PubMed  CAS  Google Scholar 

  • Jaenisch R (1976) Germ line integration and Mendelian transmission of the exogenous Moloney leukemia virus. Proc Natl Acad Sci USA 73: 1260–1264

    PubMed  CAS  Google Scholar 

  • Jaenisch R, Jahner D, Nobis P, Simon I, Lohler J, Harbers K, Grotkopp D (1981) Chromosomal position and activation of retroviral genomes inserted into the germ line of mice. Cell 24: 519–529

    PubMed  CAS  Google Scholar 

  • Jenkins NA, Cooper GM (1980) Integration, expression, and infectivity of exogenously acquired proviruses of Rous-associated virus 0. J Virol 36: 684–691

    PubMed  CAS  Google Scholar 

  • Jenkins NA, Copeland NG, Taylor BA, Lee BK (1981) Dilute (d) coat colour mutation of DBA/2J mice is associated with the site of integration of an ecotropic MULV genome. Nature 293: 370–374

    PubMed  CAS  Google Scholar 

  • Jolicoeur P, Baltimore D (1976) Effect of Fv-1 gene product on proviral DNA formation and integration in cells infected with murine leukemia viruses. Proc Natl Acad Sci USA 73: 2236–2240

    PubMed  CAS  Google Scholar 

  • Jolicoeur P, Rassart E (1980) Effect of Fv-1 gene product on synthesis of linear and sup ercoiled viral DNA in cells infected with murine leukemia virus. J Virol 33: 183–195

    PubMed  CAS  Google Scholar 

  • Jolicoeur P, Rassart E (1981) Fate of unintegrated viral DNA in Fv-1 permissive and resistant mouse cells infected with murine leukemia virus. J Virol 37: 609–619

    PubMed  CAS  Google Scholar 

  • Ju G, Skalka AM (1980) Nucleotide sequence analysis of the long terminal repeat (LTR) of avian retroviruses: structural similarities with transposable elements. Cell 22: 379–386

    PubMed  CAS  Google Scholar 

  • Ju G, Boone L, Skalka AM (1980) Isolation and characterization of recombinant DNA clones of avian retroviruses: Size heterogeneity and instability of the direct repeat. J Virol 33: 1026–1033

    PubMed  CAS  Google Scholar 

  • Junghans RP, Duesberg PH, Knight CA (1975) In vitro synthesis of full-length DNA transcripts of Rous sarcoma virus RNA by viral DNA polymerase. Proc Natl Acad Sci USA 72: 4895–4899

    PubMed  CAS  Google Scholar 

  • Kahmann K, Kamp D (1979) Nucleotide sequences of the attachment sites of bacteriophage Mu DNA. Nature 280: 247–250

    PubMed  CAS  Google Scholar 

  • Keshet E, O’Rear JJ, Temin HM (1979) DNA of noninfectious and infectious integrated spleen necrosis virus (SNV) is colinear with unintegrated SNV DNA and not grossly abnormal. Cell 16: 51–61

    PubMed  CAS  Google Scholar 

  • King AMO, Wells RD (1976) All intact subunit RNAs from Rous sarcoma virus contain poly(A). J Biol Chem 251: 150–152

    PubMed  CAS  Google Scholar 

  • Kung HJ, Shank PR, Bishop JM, Varmus HE (1980) Identification and characterization of dimeric and trimeric circular forms of avian sarcoma virus-specific DNA. Virology 103: 425–433

    PubMed  CAS  Google Scholar 

  • Kung HJ, Fung YK, Majors JE, Bishop JM, Varmus HE (1981) Synthesis of plus strands of retroviral DNA in cells infected with avian sarcoma virus and mouse mammary tumor virus. J Virol 37: 127–138

    PubMed  CAS  Google Scholar 

  • Lee F, Mulligan R, Berg P, Ringold G (1982) Glucocorticoids regulate expression of dihydrofolate reductase cDNA in mouse mammary tumor viruses chimeric plasmids. Nature 294: 228–232

    Google Scholar 

  • Leis JP, Hurwitz J (1972) RNA-dependent DNA polymerase activity of RNA tumor viruses. II. Directing influence of RNA in the reaction. J Virol 9: 130–142

    PubMed  CAS  Google Scholar 

  • Lemons RS, O’Brien SJ, Sherr CJ (1977) A new genetic locus, Bevi, on human chromosome 6 which controls the replication of baboon type C virus in human cells. Cell 12: 251–262

    PubMed  CAS  Google Scholar 

  • Lemons RS, Nash, WG, O’Brien SJ, Benveniste RE, Sherr CJ (1978) A gene (Bevi) on human chromosome 6 is an integration site for baboon type c DNA provirus in human cells. Cell 14: 995–1005

    PubMed  CAS  Google Scholar 

  • Levinson WE, Varmus HE, Garapin A, Bishop JM (1972) DNA of Rous sarcoma virus: its nature and significance. Science 175: 76–78

    PubMed  CAS  Google Scholar 

  • Levinson B, Khoury G, Van de Woude G, Gruss P (1982) Activation of SV40 genome by 72-base pair tandem repeats of Moloney sarcoma virus. Nature 295: 568–572

    PubMed  CAS  Google Scholar 

  • Levis R, Dunsmuir P, Rubin GM (1980) Terminal repeats of the Drosophila transposable element copia: nucleotide sequence and genomic organization. Cell 21: 581–588

    PubMed  CAS  Google Scholar 

  • MacHattie LA, Jackowski J (1977) In: Bnkhari AI, Shapiro JD, Adhyda SC (eds) DNA insertion elements, plasmids and episomes. Cold Spring Harbor Laboratory New York, pp 219–228

    Google Scholar 

  • Majors J, Varmus HE (1981) Nucleotide sequences at host-proviral junctions for mouse mammary tumor virus. Nature 289: 253–258

    PubMed  CAS  Google Scholar 

  • Malech HL, Wivel NA (1976) Transfer of murine intracisternal A particle phenotype in chloramphenicol-resistant particles. Cell 9: 383–391

    PubMed  CAS  Google Scholar 

  • Martin, GS, Radke K, Hughes S, Quintrell N, Bishop JM, Varmus HE (1979) Mutants of Rous sarcoma virus with extensive deletions of the viral genome. Virology 96: 530–546

    PubMed  CAS  Google Scholar 

  • McClements W, Dhar R, Blair D, Enquist L, Oskarsson M, Van de Woude G (1981) The long terminal repeat of Moloney sarcoma provirus. Cold Spring Harbor Symp Quant Biol 45: 699–705

    PubMed  CAS  Google Scholar 

  • Mellon P, Duesberg PH (1977) Subgenomic, cellular Rous sarcoma virus RNAs contain oligonucleotides from the 3’ half and the 5’ terminus of virion RNA. Nature 270: 631–634

    PubMed  CAS  Google Scholar 

  • Mitra SW, Goff S, Gilboa E, Baltimore D (1979) Synthesis of a 600-nucleotide-long plus-strand DNA by virions of Moloney murine leukemia virus. Proc Nati Acad Sci USA 76: 4355–4359

    CAS  Google Scholar 

  • Moreau P, Hen R, Wasylyk B, Everett R, Gaub MP, Chambon P (1981) The SV40 72-base repair repeat has a striking effect on gene expression both in SV40 and other chimeric recombinants. Nucleic Acids Res 9: 6047–6068

    PubMed  CAS  Google Scholar 

  • Neel BG, Hayward WS, Robinson HL, Fang J, Astrin SM (1981) Avian leukosis virus-induced tumors have common proviral integration sites and synthesize discrete viral RNAs: oncogenesis by promoter insertion. Cell 23: 323–334

    PubMed  CAS  Google Scholar 

  • Neiman PE (1972) Rous sarcoma virus nucleotide sequences in cellular DNA: measurement by RNA-DNA hybridization. Science 178: 750–753

    PubMed  CAS  Google Scholar 

  • Oppermann H, Bishop JM, Varmus HE, Leventow L (1977) A joint product of the genes gagand polof avian sarcoma virus: a possible precursor of reverse transcriptase. Cell 12: 993–1005

    PubMed  CAS  Google Scholar 

  • Oskarsson M, McClements WL, Blair DG, Maizel JV, Van de Woude GF (1980) Properties of a normal mouse cell DNA sequence (sarc) homologous to the srcsequence of Moloney sarcoma virus. Science 207: 1222–1224

    PubMed  CAS  Google Scholar 

  • Payne GS, Courtneidge SA, Crittenden LB, Fadly AM, Bishop JM, Varmus HE (1981) Analysis of avian leukosis virus DNA and RNA in bursal tumors: viral gene expression is not required for maintenance of the tumor state. Cell 23: 311–322

    PubMed  CAS  Google Scholar 

  • Payne GS, Bishop JM, Varmus HE (1982) Multiple arrangements of viral DNA and an activated host oncogene (c-myc)in bursal lymphomas. Nature 295: 209–213

    PubMed  CAS  Google Scholar 

  • Peters G, Dahlberg JE (1979) RNA-directed DNA synthesis in Moloney murine leukemia virus: interaction between the primer tRNA and the genome RNA. J Virol 31: 398–407

    PubMed  CAS  Google Scholar 

  • Peters G, Harada F, Dahlberg JE, Panet A, Haseltine WA, Baltimore D (1977) Low-molecularweight RNAs of Moloney murine leukemia virus: identification of the primer for RNA-directed DNA synthesis. J Virol 21: 1031–1041

    PubMed  CAS  Google Scholar 

  • Quintrell N, Hughes SH, Varmus HE, Bishop JM (1980) Structure of viral DNA and RNA in mammalian cells infected with avian sarcoma virus. J Mol Biol 143: 363–393

    PubMed  CAS  Google Scholar 

  • Ringold GM, Shank PR, Varmus HE, Ring J, Yamamoto KR (1979) Integration and transcription of mouse mammary virus DNA in rat hepatoma cells. Proc Natl Acad Sci USA 76: 665–669

    PubMed  CAS  Google Scholar 

  • Rose J, Haseltine W, Baltimore D (1976) 5’ terminus of Moloney murine leukemia virus 35S RNA is m7G5’ ppp5’ GmpCp. J Virol 20:324–329

    PubMed  CAS  Google Scholar 

  • Rothenberg E, Baltimore D (1977) Increased length of DNA made by virions of murine leukemia virus at limiting magnesium ion concentration. J Virol 21: 168–178

    PubMed  CAS  Google Scholar 

  • Rothenberg E, Smotkin D, Baltimore D, Weinberg RA (1977) In vitro synthesis of infectious DNA of murine leukemia virus. Nature 269: 122–126

    PubMed  CAS  Google Scholar 

  • Rothenberg E, Donoghue DJ, Baltimore D (1978) Analysis of a 5’ leader sequence on murine leukemia virus 21S RNA: heteroduplex mapping with long reverse transcriptase products. Cell 13: 435–451

    PubMed  CAS  Google Scholar 

  • Sabran J, Hsu T, Yeater C, Kaji A, Mason WS, Taylor J (1979) Analysis of integrated avian RNA tumor virus DNA in transformed chicken, duck and quail fibroblasts. J Virol 29: 170–178

    PubMed  CAS  Google Scholar 

  • Sarkar N, Nowinski R, Moore DH (1971) Helical nucleocapsid structure of the oncogenic ribonucleic acid viruses (oncomaviruses). J Virol 8: 564–572

    PubMed  CAS  Google Scholar 

  • Sawyer RC, Dahlberg JE (1973) Small RNAs of Rous sarcoma virus: characterization by two-dimensional polyacrylamide gel electrophoresis and fingerprint analysis. J Virol 12: 1226–1237

    PubMed  CAS  Google Scholar 

  • Sawyer RC, Harada F, Dahlberg JE (1974) Virion-associated RNA primer for Rous sarcoma virus DNA synthesis: isolation from uninfected cells. J Virol 13: 1302–1311

    PubMed  CAS  Google Scholar 

  • Schindler J, Haynes R, Hopkins N (1977) Evidence for recombination between N- and B-tropic murine leukemia viruses: analysis of three virion proteins by sodium dodecyl sulfatepolyacrylamide gel electrophoresis. J Virol 23: 700–707

    PubMed  CAS  Google Scholar 

  • Schwartz DE, Zamecnik PC, Weith HI (1977) Rous sarcoma virus genome is terminally redundant: the 3’ sequence. Proc Natl Acad Sci USA 74: 994–998

    PubMed  CAS  Google Scholar 

  • Shank PR, Varmus HE (1978) Virus-specific DNA in the cytoplasm of avian sarcoma virus-infected cells is a precursor to covalently closed circular viral DNA in the nucleus. J Virol 25: 104–114

    PubMed  CAS  Google Scholar 

  • Shank PR, Cohen JC, Varmus HE, Yamamoto KR, Ringold GB (1978a) Mapping of linear and circular forms of mouse mammary tumor virus DNA with restriction endonucleas es: Evidence for a large specific deletion occurring at high frequency during circularization. Proc Natl Acad Sci USA 75: 2112–2116

    CAS  Google Scholar 

  • Shank PR, Hughes SH, Kung HJ, Majors JE, Quintrell N, Guntaka RV, Bishop JM, Varmus HE (1978b) Mapping unintegrated avian sarcoma virus DNA: termini of linear DNA bear 300 nucleotides present once or twice in two species of circular DNA. Cell 15: 1383–1395

    CAS  Google Scholar 

  • Shapiro J (1979) Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements. Proc Natl Acad Sci USA 76: 1933–1937

    PubMed  CAS  Google Scholar 

  • Shapiro S, Strand M, August JT (1976) High molecular weight precursor polypeptides to structural proteins of Rauscher murine leukemia virus. J Mol Biol 107: 459–477

    PubMed  CAS  Google Scholar 

  • Sherr CJ, Fedele LA, Donner L, Turek LP (1979) Restriction endonuclease mapping of un-integrated proviral DNA of Snyder-Theilen feline sarcoma virus: localization of sarcoma-specific sequences. J Virol 32: 860–875

    PubMed  CAS  Google Scholar 

  • Shimotohno K, Temin HM (1980) No apparent nucleotide sequence specificity in cellular DNA juxtaposed to retrovirus proviruses. Proc Natl Acad Sci USA 77: 7357–7361

    PubMed  CAS  Google Scholar 

  • Shimotohno K, Mizutani S, Temin HM (1980) Sequence of retrovirus provirus resembles that of bacterial transposable elements. Nature 285: 550–554

    PubMed  CAS  Google Scholar 

  • Shoemaker C, Goff S, Gilboa E, Paskind M, Mitra SW, Baltimore D (1980) Structure of a cloned circular Moloney murine leukemia virus molecule containing an inverted segment: implications for retrovirus integration. Proc Natl Acad Sci USA 77: 3932–3936

    PubMed  CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–517

    PubMed  CAS  Google Scholar 

  • Steffen D, Weinberg RA (1978) The integrated genome of murine leukemia virus. Cell 15: 1003–1010

    PubMed  CAS  Google Scholar 

  • Stoll E, Billeter MA, Palmenberg A, Weissmann (1977) Avian myeloblastosis virus RNA is terminally redundant: implications for the mechanism of retrovirus replication. Cell 12: 57–72

    PubMed  CAS  Google Scholar 

  • Stoltzfus CM, Synder PN (1975) Structure of B77 sarcoma virus RNA: stabilization of RNA after packaging. J Virol 16: 1161–1170

    PubMed  CAS  Google Scholar 

  • Sutcliffe JG, Shinnick TM, Verma IM, Lerner RA (1980) Nucleotide sequence of Moloney leukemia virus: 3’ end reveals details of replication, analogy to bacterial transposons, and an unexpected gene. Proc Natl Acad Sci USA 77: 3302–3306

    PubMed  CAS  Google Scholar 

  • Sveda MM, Soeiro R (1976) Host restriction of Friend leukemia virus: synthesis and integration of the provirus. Proc Natl Acad Sci USA 73: 2356–2366

    PubMed  CAS  Google Scholar 

  • Swanstrom R, Varmus HE, Bishop JM (1981a) The terminal redundancy of the retrovirus genome facilitates chain elongation by reverse transcriptase. J Biol Chem 256: 115–1121

    Google Scholar 

  • Swanstrom R, DeLorbe WJ, Bishop JM, Varmus HE (1981b) Nucleotide sequence of cloned unintegrated avian sarcoma virus DNA: viral DNA contains direct and inverted repeats similar to those in transposable elements. Proc Natl Acad Sci USA 78: 124–128

    CAS  Google Scholar 

  • Taylor JM, Hsu TW (1980) Reverse transcription of avian sarcoma virus RNA into DNA might involve copying of the tRNA primer. J Virol 33: 531–534

    PubMed  CAS  Google Scholar 

  • Taylor JM, Illmensee R (1975) Site on the RNA of an avian sarcoma virus at which primer is bound. J Virol 16: 553–558

    PubMed  CAS  Google Scholar 

  • Taylor JM, Cordell-Stewart B, Rohde W, Goodman HM, Bishop JM (1975) Reassociation of 4S and 5S RNAs with the genome of avian sarcoma virus. Virology 65: 248–259

    PubMed  CAS  Google Scholar 

  • Temin HM (1982) Function of the retrovirus long terminal repeat. Cell 28: 3–5

    PubMed  CAS  Google Scholar 

  • Tress E, O’Donnell PV, Famulari N, Ellis RW, Fleissner E (1979) Polymorphism of B-tropic leukemia viruses from BALB/c mice: association of a p30 antigen with N- versus B-tropism. J Virol 32: 350–355

    PubMed  CAS  Google Scholar 

  • Van Beveren C, Goddard JG, Berns A, Verma IM (1980) Structure of Moloney murine leukemia viral DNA: nucleotide sequence of the 5’ long terminal repeat and adjacent cellular sequence. Proc Nati Acad Sci USA 77: 3307–3311

    Google Scholar 

  • Varmus HE, Bishop JM, Vogt PK (1973a) Appearance of virus-specific DNA in mammalian cells following transformation by Rous sarcoma virus. J Mol Biol 74: 613–626

    CAS  Google Scholar 

  • Varmus HE, Vogt PK, Bishop JM (1973b) Integration of deoxyribonucleic acid specific for Rous sarcoma virus after infection of permissive and nonpermissive hosts. Proc Natl Acad Sci 70: 3067–3071

    CAS  Google Scholar 

  • Varmus HE, Guntaka RV, Fan WJW, Heasley S, Bishop JM (1974) Synthesis of viral DNA in the cytoplasm of duck embryo fibroblasts and in enucleated cells after infection by avian sarcoma virus. Proc Natl Acad Sci USA 71: 3874–3878

    PubMed  CAS  Google Scholar 

  • Varmus HE, Guntaka RV, Deng CT, Bishop JM (1975) Synthesis, structure, and function of avian sarcoma virus-specific DNA in permissive and nonpermissive cells. Cold Spring Harbor Symp Quant Biol 39: 987–996

    PubMed  Google Scholar 

  • Varmus HE, Padgett T, Heasley S, Simon G, Bishop JM (1977) Cellular functions are required for the synthesis and integration of avian sarcoma virus-specific DNA. Cell 11: 307–319

    PubMed  CAS  Google Scholar 

  • Varmus HE, Heasley S, King HJ, Oppermann H, Smith VC, Bishop JM, Shank PR (1978) Kinetics of synthesis, structure and purification of avian sarcoma virus-specific DNA made in the cytoplasm of acutely infected cells. J Mol Biol 120: 55–82

    PubMed  CAS  Google Scholar 

  • Varmus HE, Shank PR, Hughes SE, Kung H-J, Heasley S, Majors J, Vogt PK, Bishop JM (1979) Synthesis, structure, and integration of the DNA of RNA tumor viruses. Cold Spring Harbor Symp Quant Biol 43: 851–864

    PubMed  CAS  Google Scholar 

  • Varmus HE, Quintrell N, Wyke J (1981a) Revertants of an ASV-transformed rat cell line have lost the complete provirus or sustained mutations in src. Virology 108: 28–46

    CAS  Google Scholar 

  • Varmus HE, Quintrell N, Ortiz S (1981b) Retroviruses as mutagens: insertion and excision of a nontransforming provirus alter expression of a resident transforming provirus. Cell 25: 23–36

    CAS  Google Scholar 

  • Waters LC, Mullin BC, Bailiff EG, Popp RA (1975) tRNAs associated with the 70S RNA of avian myeloblastosis virus. J Virol 16:1608–1614

    PubMed  CAS  Google Scholar 

  • Weinberg RA (1977) Structure of the intermediates leading to the integrated provirus. Biochim Biophys Acta 473: 39–55

    PubMed  CAS  Google Scholar 

  • Weiss SR, Varmus HE, Bishop JM (1977) The size and genetic composition of virus-specific RNAs in the cytoplasm of cells producing avian sarcoma-leukemia viruses. Cell 12: 983–992

    PubMed  CAS  Google Scholar 

  • Wells RD, Flugel RM, Larson JE, Schendel PF, Sweet RW (1972) Comparison of some reactions catalyzed by deoxyribonucleic acid polymerase from avian myeloblastosis virus, Escherichia coli, and Micrococcus luteus. Biochemistry 11: 621–629

    PubMed  CAS  Google Scholar 

  • Williamson VM, Young ET, Ciriacy M (1981) Transposable elements associated with constitutive expression of yeast alcohol dehydrogenase II. Cell 23: 605–614

    PubMed  CAS  Google Scholar 

  • Yamamoto T, de Crombrugghe B, Pastan I (1980a) Identification of a functional promoter in the long terminal repeat of Rous sarcoma virus. Cell 22: 787–797

    CAS  Google Scholar 

  • Yamamoto T, Jay G, Pastan I (1980b) Unusual features in the nucleotide sequence of a cDNA clone derived from the common region of avian sarcoma virus messenger RNA. Proc Natl Acad Sci USA 77: 176–180

    CAS  Google Scholar 

  • Yang WK, Kiggans JO, Yang D-M, Ou C-Y, Tennant RW, Brown A, Bassin RH (1980) Synthesis and circularization of N- and B-tropic retroviral DNA in Fv-1 permissive and restrictive mouse cells. Proc Nati Acad Sci USA 77: 2994–2998

    CAS  Google Scholar 

  • Yoshimora FK, Weinberg RA (1979) Restriction endonuclease cleavage of linear and closed circular form. Cell 16: 323–332

    Google Scholar 

  • Yoshinaka Y, Luftig RK (1977) Murine leukemia virus morphogenesis: cleavage of p70 in vitro can be accompanied by a shift from a concentrifically coiled internal strand (“immature”) to a collapsed (“mature”) form of the virus core. Proc Natl Acad Sci USA 74: 3446–3450

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hughes, S.H. (1983). Synthesis, Integration, and Transcription of the Retroviral Provirus. In: Vogt, P.K., Koprowski, H. (eds) Retroviruses 1. Current Topics in Microbiology and Immunology, vol 103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68943-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68943-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68945-1

  • Online ISBN: 978-3-642-68943-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics