Skip to main content

Hydrophobic Layers Attached to Cell Walls. Cutin, Suberin and Associated Waxes

  • Chapter
Plant Carbohydrates II

Part of the book series: Encyclopedia of Plant Physiology ((921,volume 13 / B))

Abstract

The polysaccharidic cell walls do not constitute a significant diffusion barrier, and, therefore, plants attach a hydrophobic layer to the wall to erect such a barrier. Such diffusion barriers consist of an insoluble polymeric structural component and a complex mixture of extractable lipids, collectively called wax. We shall briefly summarize the general characteristics, structure, composition, metabolism, and function of the waxes and the polymeric materials. Other more detailed reviews on the subject are available (Martin and Juniper 1970, Kolattukudy 1980b) and the function of the components is discussed by J. Schönherr, Chapter 1.6, in Volume 12B of this series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal VP, Kolattukudy PE (1977) Biochemistry of suberization; ω-hydroxyacid oxidation in enzyme preparations from suberizing potato tuber disks. Plant Physiol 59: 667–672

    PubMed  CAS  Google Scholar 

  • Agrawal VP, Kolattukudy PE (1978 a) Purification and characterization of a wound-induced ω-hydroxyfatty acid: NADP oxidoreductase from potato tuber disks. Arch Biochem Biophys 191: 452–465

    PubMed  CAS  Google Scholar 

  • Agrawal VP, Kolattukudy PE (1978 b) Mechanism of action of a wound-induced ω-hydroxyfatty acid: NADP oxidoreductase isolated from potato tubers (Solanum tuberosum L). Arch Biochem Biophys 191: 466–478

    PubMed  CAS  Google Scholar 

  • Aist JR (1976) Cytology of penetration and infection-fungi. In: Heitefuss R, Williams PH (eds) Encyclopedia plant physiology, new series Vol 4, Physiological plant pathology. Springer, Berlin Heidelberg New York, pp 197–221

    Google Scholar 

  • Baker EA, Procopiou J (1975) The cuticles of Citrus species. Composition of the intracuticular lipids of leaves and fruits. J Sci Food Agric 26: 1347–1352

    CAS  Google Scholar 

  • Barckhausen R (1978) Ultrastructural changes in wounded plant storage tissue cells. In: Kahl G (ed) Biochemistry of wounded plant tissues, de Gruyter, Berlin New York, pp 1–42

    Google Scholar 

  • Brieskorn CH, Binneman PH (1975) Carbonsäuren und Alkanole des Cutins und Suberins von Solanum tuberosum. Phytochemistry 14: 1363–1367

    CAS  Google Scholar 

  • Brieskorn CH, Kabelitz L (1971) Hydroxyfettsäuren aus dem Cutin des Blattes von Rosmarinus officinalis. Phytochemistry 10: 3195–3204

    CAS  Google Scholar 

  • Brisson JD, Robb J, Peterson RL (1976) Phenolic localization by ferric chloride and other iron compounds. Microsc Soc Can 3: 174–175

    CAS  Google Scholar 

  • Brown AJ, Kolattukudy PE (1978 a) Evidence that pancreatic lipase is responsible for the hydrolysis of cutin. Arch Biochem Biophys 190: 17–26

    PubMed  CAS  Google Scholar 

  • Brown AJ, Kolattukudy PE (1978 b) Mammalian utilization of cutin, the cuticular polyester of plants. J Agric Food Chem 26: 1263–1266

    PubMed  CAS  Google Scholar 

  • Caldicott AB, Eglinton G (1976) Cutin acids from Bryophytes: an ω-l hydroxy alkanoic acid in two liverwort species. Phytochemistry 15: 1139–1143

    CAS  Google Scholar 

  • Caldicott AB, Simoneit BRT, Eglinton G (1975) Alkane triols in Psilotophyte cutins. Phytochemistry 14: 2223–2228

    CAS  Google Scholar 

  • Carr DJ, Carr SGM (1978) Origin and development of stomatal microanatomy in two species of Eucalyptus. Protoplasma 96: 127–148

    Google Scholar 

  • Cassagne C (1970) Les hydrocarbures végétaux: biosynthesis et localisation cellulaire. Ph D Thesis, Univ Bordeaux, France

    Google Scholar 

  • Cassagne C, Lessire R (1974) Studies on alkane biosynthesis in epidermis of Allium porrum L. leaves. Arch Biochem Biophys 165: 274–280

    PubMed  CAS  Google Scholar 

  • Cassagne C, Lessire R (1978) Biosynthesis of saturated very long chain fatty acids by purified membrane fractions from leek epidermal cells. Arch Biochem Biophys 191: 146–152

    PubMed  CAS  Google Scholar 

  • Cassagne C, Lessire R (1979) Biosynthesis of the very long chain fatty acids in higher plants from exogenous substrates. In: Appelqvist L-Ã…, Liljenberg C (eds) Advances in the biochemistry and physiology of plant lipids. Elsevier, New York, pp 393–398

    Google Scholar 

  • Christ B (1959) Entwicklungsgeschichtliche und physiologische Untersuchungen über die Selbststerilität von Cardamine pratensis L. Z Bot 47: 88–112

    CAS  Google Scholar 

  • Crisp CE (1965) The biopolymer cutin. Ph D Thesis, Univ California, Davis

    Google Scholar 

  • Croteau R, Fagerson IS (1972) The constituent cutin acids of cranberry cuticle. Phytochemistry 11: 353–363

    CAS  Google Scholar 

  • Croteau R, Kolattukudy PE (1973) Enzymatic synthesis of a hydroxy fatty acid polymer, cutin, by a particulate preparation from Vicia faba epidermis. Biochem Biophys Res Commun 52: 863–869

    PubMed  CAS  Google Scholar 

  • Croteau R, Kolattukudy PE (1974 a) Direct evidence for the involvement of epoxide intermediates in the biosynthesis of the C18 family of cutin acids. Arch Biochem Biophys 162: 471–480

    PubMed  CAS  Google Scholar 

  • Croteau R, Kolattukudy PE (1974 b) Biosynthesis of hydroxy fatty acid polymers. Enzymatic synthesis of cutin from monomer acids by cell-free preparations from the epidermis of Vicia faba leaves. Biochemistry 13: 3193–3202

    PubMed  CAS  Google Scholar 

  • Croteau R, Kolattukudy PE (1975 a) Biosynthesis of hydroxy fatty acid polymers. Enzymatic epoxidation of 18-hydroxy oleic acid to 18-hydroxy-cis-9,10-epoxystearic acid by a particulate preparation from spinach (Spinacia oleracea). Arch Biochem Biophys 170: 61–72

    PubMed  CAS  Google Scholar 

  • Croteau R, Kolattukudy PE (1975 b) Biosynthesis of hydroxy fatty acid polymers. Enzymatic hydration of 18-hydroxy-cis-9,10-epoxystearic acid to threo-9,10,18-trihydroxystearic acid by a particulate preparation from apple (Malus pumila). Arch Biochem Biophys 170: 73–81

    PubMed  CAS  Google Scholar 

  • Dean BB, Kolattukudy PE (1976) Synthesis of suberin during wound-healing in jade leaves, tomato fruit, and bean pods. Plant Physiol 58: 411–416

    PubMed  CAS  Google Scholar 

  • Dean BB, Kolattukudy PE, Davis RW (1977) Chemical composition and ultrastructure of suberin from hollow heart tissue of potato tubers (Solanum tuberosum). Plant Physiol 59: 1008–1010

    PubMed  CAS  Google Scholar 

  • Deas AHB, Holloway PJ (1977) The intermolecular structure of some plant cutins. In: Tevini M, Lichtenthaler HK (eds) Lipids and lipid polymers in higher plants. Springer, Berlin Heidelberg New York, pp 293–299

    Google Scholar 

  • Deas AHB, Baker EA, Holloway PJ (1974) Identification of 16-hydroxyoxohexadecanoic acid monomers in plant cutins. Phytochemistry 13: 1901–1905

    CAS  Google Scholar 

  • Eglinton G, Hunneman DH (1968) Gas chromatographic-mass spectrometric studies of long chain hydroxy acids. I. The constituent cutin acids of apple cuticle. Phytochemistry 7: 313–322

    CAS  Google Scholar 

  • Espelie KE, Kolattukudy PE (1978) The optical rotation of a major component of plant cutin. Lipids 13: 832–833

    CAS  Google Scholar 

  • Espelie KE, Kolattukudy PE (1979 a) Composition of the aliphatic components of suberin of the endodermal fraction from the first internode of etiolated Sorghum seedlings. Plant Physiol 63: 433–435

    PubMed  CAS  Google Scholar 

  • Espelie KE, Kolattukudy PE (1979b) Composition of the aliphatic components of ‘suberin’ from the bundle sheaths of Zea mays leaves. Plant Sci Lett 15: 225–230

    CAS  Google Scholar 

  • Espelie KE, Dean BB, Kolattukudy PE (1979) Composition of lipid-derived polymers from different anatomical regions of several plant species. Plant Physiol 64: 1089–1093

    PubMed  CAS  Google Scholar 

  • Espelie KE, Sadek NZ, Kolattukudy PE (1980 a) Composition of suberin-associated waxes from the subterranean storage organs of seven plants [parsnip, carrot, rutabaga, turnip, red beet, sweet potato and potato]. Planta, 148: 468–476

    CAS  Google Scholar 

  • Espelie KE, Davis RW, Kolattukudy PE (1980b) Composition, ultrastructure and function of the cutin and suberin-containing layers in the leaf, fruit peel, juice-sac and inner seed coat of grapefruit (Citrus paradisi Macfed). Planta, 149: 498–511

    CAS  Google Scholar 

  • Ferguson IB, Clarkson DT (1976) Ion uptake in relation to the development of a root hypodermis. New Phytol 77: 11–14

    CAS  Google Scholar 

  • Grambow HJ, Grambow GE (1978) The involvement of epicuticular and cell wall phenols of the host plant in the in vitro development of Puccinia graminis F. sp. tritici. Z Pflanzenphysiol 90: 1–9

    CAS  Google Scholar 

  • Grünwald J, Seemüller E (1979) Zerstörung der Resistenzeigenschaften des Himbeerrutenperiderms als Folge des Abbaus von Suberin und Zellwandpolysacchariden durch die Himbeerrutengallmücke Thomasiniana theobaldi Barnes (Dipt., Cecidomyiidae). Z Pflanzenkr Pflanzenschutz 86: 305–314

    Google Scholar 

  • Hankin L, Kolattukudy PE (1971) Utilization of cutin by a Pseudomonad isolated from soil. Plant Soil 34: 525–529

    CAS  Google Scholar 

  • Heinen W, Linskens HF (1961) Enzymic breakdown of stigmatic cuticula of flowers. Nature 191:1416

    CAS  Google Scholar 

  • Heinen W, de Vries H (1966) Stages during the breakdown of plant cutin by soil microorganisms. Arch Mikrobiol 54: 331–338

    CAS  Google Scholar 

  • Hergent HL (1958) Chemical composition of cork from white fir bark. Forest Prod J 8: 335–339

    Google Scholar 

  • Holloway PJ (1972 a) The composition of suberin from the corks of Quercus suber L and Betula pendula Roth. Chem Phys Lipids 9: 158–170

    CAS  Google Scholar 

  • Holloway PJ (1972 b) The suberin composition of the cork layers from some Ribes species. Chem Phys Lipids 9: 171–179

    CAS  Google Scholar 

  • Holloway PJ (1973) Cutins of Malus pumila fruits and leaves. Phytochemistry 12: 2913–2920

    CAS  Google Scholar 

  • Holloway PJ (1974) Intracuticular lipids of spinach leaves. Phytochemistry 13: 2201–2207

    CAS  Google Scholar 

  • Holloway PJ, Baker EA (1970) The cuticles of some angiosperm leaves and fruits. Ann Appl Biol 66: 145–154

    Google Scholar 

  • Holloway PJ, Deas AHB (1971) The occurrence of positional isomers of dihydroxyhexadecanoic acid in plant cutins and suberins. Phytochemistry 10: 2781–2785

    CAS  Google Scholar 

  • Holloway PJ, Baker EA, Martin JT (1972 a) The chemistry of plant cutins and suberins. An Quim 68: 905–916

    Google Scholar 

  • Holloway PJ, Deas AHB, Kabarra AM (1972b) Composition of cutin from coffee leaves. Phytochemistry 11: 1443–1447

    CAS  Google Scholar 

  • Hunneman DH, Eglinton G (1972) The constituent acids of gymnosperm cutins. Phytochemistry 11: 1989–2001

    CAS  Google Scholar 

  • Jackson LL, Blomquist GJ (1976) Insect waxes. In: Kolattukudy PE (ed) Chemistry and biochemistry of natural waxes. Elsevier, New York, pp 201–235

    Google Scholar 

  • Khan AA, Kolattukudy PE (1973) Control of synthesis and distribution of acyl moieties in etiolated Euglena gracilis. Biochemistry 12: 1939–1948

    PubMed  CAS  Google Scholar 

  • Khan AA, Kolattukudy PE (1974) Decarboxylation of long chain fatty acids to alkanes by cell-free preparations of pea leaves (Pisum sativum). Biochem Biophys Res Commun 61:1379–1386

    PubMed  CAS  Google Scholar 

  • Knox RB, Clarke A, Harrison S, Smith P, Marchalonis JJ (1976) Cell recognition in plants: determination of the stigma surface and their pollen interactions. Proc Natl Acad Sci USA 73: 2788–2792

    PubMed  CAS  Google Scholar 

  • Kolattukudy PE (1966) Biosynthesis of wax in Brassica oleracea. Relation of fatty acids to wax. Biochemistry 5: 2265–2275

    PubMed  CAS  Google Scholar 

  • Kolattukudy PE (1967) Biosynthesis of paraffins in Brassica oleracea: Fatty acid elongation-decarboxylation as a plausible pathway. Phytochemistry 6: 963–975

    CAS  Google Scholar 

  • Kolattukudy PE (1970) Reduction of fatty acids to alcohols by cell-free preparations of Euglena gracilis. Biochemistry 9: 1095–1102

    PubMed  CAS  Google Scholar 

  • Kolattukudy PE (1971) Enzymatic synthesis of fatty alcohols in Brassica oleracea. Arch Biochem Biophys 142: 701–709

    PubMed  CAS  Google Scholar 

  • Kolattukudy PE (1974) Biosynthesis of a hydroxy fatty acid polymer, cutin. Identification and biosynthesis of 16-oxo-9- or 10-hydroxy palmitic acid, a novel compound in Vicia faba. Biochemistry 13: 1354–1363

    PubMed  CAS  Google Scholar 

  • Kolattukudy PE (1975) Biochemistry of cutin, suberin and waxes, the lipid barriers on plants. In : Galliard T, Mercer EI (eds) Recent advances in the chemistry and biochemistry of plant lipids. Academic Press, New York, pp 203–246

    Google Scholar 

  • Kolattukudy PE (1977) Lipid polymers, and associated phenols, their chemistry, biosynthesis, and role in pathogenesis. In: Loewus FA, Runeckles VC (eds) The structure, biosynthesis, and degradation of wood. Plenum Press, New York, pp 185–246

    Google Scholar 

  • Kolattukudy PE (1978) Chemistry and biochemistry of the aliphatic components of suberin. In: Kahl G (ed) Biochemistry of wounded plant tissues. de Gruyter, Berlin New York, pp 43–84

    Google Scholar 

  • Kolattukudy PE (1980a) Biopolyester membranes of plants: cutin and suberin. Science 208: 990–1000

    PubMed  CAS  Google Scholar 

  • Kolattukudy PE (1980b) Cutin, suberin and waxes. In: Stumpf PK, Conn EE (eds) The biochemistry of plants Vol 4. Stumpf PK (ed) Lipids: structure and function. Academic Press, New York, pp 571–645

    Google Scholar 

  • Kolattukudy PE, Brown L (1975) Fate of naturally occurring epoxy acids: a soluble epoxide hydrase, which catalyzes cis hydration from Fusarium solani pisi. Arch Biochem Biophys 166: 599–607

    PubMed  CAS  Google Scholar 

  • Kolattukudy PE, Buckner JS (1972) Chain elongation of fatty acids by cell-free extracts of epidermis from pea leaves (Pisum sativum). Biochem Biophys Res Commun 46: 801–807

    PubMed  CAS  Google Scholar 

  • Kolattukudy PE, Dean BB (1974) Structure, gas chromatographic measurement, and function of suberin synthesized by potato tuber tissue slices. Plant Physiol 54: 116–121

    PubMed  CAS  Google Scholar 

  • Kolattukudy PE, Liu TJ (1970) Direct evidence for biosynthetic relationships among hydrocarbons, secondary alcohols and ketones in Brassica oleracea. Biochem Biophys Res Commun 41: 1369–1374

    PubMed  CAS  Google Scholar 

  • Kolattukudy PE, Walton TJ (1972) Structure and biosynthesis of the hydroxy fatty acids of cutin in Vicia faba leaves. Biochemistry 11: 1897–1907

    PubMed  CAS  Google Scholar 

  • Kolattukudy PE, Walton TJ (1973) The biochemistry of plant cuticular lipids. Progr Chem Fats Other Lipids 13: 119–175

    CAS  Google Scholar 

  • Kolattukudy PE, Buckner JS, Brown L (1972) Direct evidence for a decarboxylation mechanism in the biosynthesis of alkanes in B. oleracea. Biochem Biophys Res Commun 47: 1306–1313

    PubMed  CAS  Google Scholar 

  • Kolattukudy PE, Walton TJ, Kushwaha RPS (1973 a) Biosynthesis of the C18 family of cutin acids: ω-hydroxyoleic acid, ω-hydroxy-9,10-epoxystearic acid, 9,10,18-trihydroxy-stearic acid, and their Δ 12-unsaturated analogs. Biochemistry 12: 4488–4498

    PubMed  CAS  Google Scholar 

  • Kolattukudy PE, Buckner JS, Liu TYJ (1973 b) Biosynthesis of secondary alcohols and ketones from alkanes. Arch Biochem Biophys 156: 613–620

    PubMed  CAS  Google Scholar 

  • Kolattukudy PE, Croteau R, Brown L (1974) Hydroxylation of palmitic acid and decarboxylation of C28, C30 and C32 acids in Vicia faba flowers. Plant Physiol 54: 670–677

    PubMed  CAS  Google Scholar 

  • Kolattukudy PE, Kronman K, Poulose AJ (1975) Determination of structure and composition of suberin from the roots of carrot, parsnip, rutabaga, turnip, red beet and sweet potato by combined gas-liquid chromatography and mass spectrometry. Plant Physiol 55: 567–573

    PubMed  CAS  Google Scholar 

  • Kolattukudy PE, Croteau R, Buckner JS (1976) The biochemistry of plant waxes. In: Kolattukudy PE (ed) The chemistry and biochemistry of natural waxes. Elsevier, New York, pp 289–347

    Google Scholar 

  • Krähmer H (1980) Wundreaktionen von Apfelbäumen und ihr Einfluß auf Infektionen mit Nectria galligena. Z Pflanzenkr Pflanzenschutz 87: 97–112

    Google Scholar 

  • Lampard JF, Carter GA (1973) Chemical investigations on resistance to coffee berry disease in Coffea arabica. An antifungal compound in coffee cuticular wax. Ann Appl Biol 73: 31–37

    CAS  Google Scholar 

  • Lessire R (1973) Etude de la biosynthèse des acides gras a tres longue chaine et leurs relations avec les alcanes dans la cellule d’epiderme d’Allium porrum. PhD Thesis, Univ Bordeaux, France

    Google Scholar 

  • Levy EC, Ishaaya I, Gurevite E, Cooper R, Lavie D (1974) Isolation and identification of host compounds eliciting attraction and bite stimuli in the fruit tree bark beetle, Scolytus mediterraneus. J Agr Food Chem 22: 376–379

    CAS  Google Scholar 

  • Lin K, Yamada H, Kato M (1971) Free fatty acids promote feeding behavior of silkworm, Bombyx mori L. Mem Fac Sci Kyoto Univ Ser Biol 4: 108–115

    Google Scholar 

  • Lin T-S, Kolattukudy PE (1976) Evidence for novel linkages in a glycoprotein involving β-hydroxyphenylalanine and β-hydroxytyrosine. Biochem Biophys Res Commun 72: 243–250

    PubMed  CAS  Google Scholar 

  • Lin T-S, Kolattukudy PE (1977) Glucuronyl glycine, a novel N-terminus in a glycoprotein. Biochem Biophys Res Commun 75: 87–93

    PubMed  CAS  Google Scholar 

  • Lin T-S, Kolattukudy PE (1978) Induction of a biopolyester hydrolase (cutinase) by low levels of cutin monomers in Fusarium solani f. sp. pisi. J Bacteriol 133: 942–951

    PubMed  CAS  Google Scholar 

  • Lin T-S, Kolattukudy PE (1979) Direct evidence for the presence of β-hydroxyphenylalanine and β-hydroxytyrosine in cutinase from Fusarium solani pisi. Arch Biochem Biophys 196: 225–264

    Google Scholar 

  • Lin T-S, Kolattukudy PE (1980 a) Structural studies on cutinase, a glycoprotein containing novel amino acids and glucuronic acid amide at the N-terminus. Europ J Biochem 106: 341–351

    PubMed  CAS  Google Scholar 

  • Lin T-S, Kolattukudy PE (1980 b) Isolation and characterization of a cuticular polyester (cutin) hydrolyzing enzyme from phytopathogenic fungi. Physiol Plant Pathol 17: 1–15

    CAS  Google Scholar 

  • Linskens HF, Heinen W (1962) Cutinase-Nachweis in Pollen. Z Bot 50: 338–347

    CAS  Google Scholar 

  • Liu TYJ (1972) M.S. Thesis, Washington State University, Pullman, Washington, USA

    Google Scholar 

  • Macey MJK, Stumpf PK (1968) Fat metabolism in higher plants XXXVI: long chain fatty acid synthesis in germinating peas. Plant Physiol 43: 1637–1647

    PubMed  CAS  Google Scholar 

  • Maiti IB, Kolattukudy PE (1979) Prevention of fungal infection of plants by specific inhibition of cutinase. Science 205: 507–508

    PubMed  CAS  Google Scholar 

  • Maiti IB, Kolattukudy PE, Shaykh M (1979) Purification and characterization of a novel cutinase from nasturtium (Tropaeolum majus) pollen. Arch Biochem Biophys 196: 412–423

    PubMed  CAS  Google Scholar 

  • Martin JT (1964) Role of cuticle in the defense against plant disease. Annu Rev Phytopathol 2: 81–100

    Google Scholar 

  • Martin JT, Juniper BE (1970) The cuticles of plants. St Martins Press, New York

    Google Scholar 

  • Matic M (1956) The chemistry of plant cuticle. A study of cutin from Agave americana L. Biochem J 63: 168–178

    PubMed  CAS  Google Scholar 

  • Mazliak P (1963) La cire cuticulaire des pommes (Malus pumila L.) Ph D Thesis, Univ Paris, France

    Google Scholar 

  • Mikkelsen JD (1979) Structure and biosynthesis of β-diketones in barley spike epicuticular wax. Carlsberg Res Commun 44: 133–147

    CAS  Google Scholar 

  • Mullick DB (1977) The non-specific nature of defense in bark and wood during wounding, insect and pathogen attack. In : Loewus FA, Runeckles VC (eds) The structure, biosynthesis and degradation of wood. Plenum Press, New York, pp 395–442

    Google Scholar 

  • O’Brien TP, Carr DJ (1970) A suberized layer in the cell walls of the bundle sheath of grasses. Aust J Biol Sci 23: 275–287

    Google Scholar 

  • O’Brien TP, Kuo J (1975) Development of the suberized lamella in the mestome sheath of wheat leaves. Aust J Bot 23: 783–794

    Google Scholar 

  • Olesen P (1978) Studies on the physiological sheaths in roots. I. Ultrastructure of the exodermis in Hoya carnosa L. Protoplasma 94: 325–340

    Google Scholar 

  • Olesen P (1979) Ultrastructural observations on the cuticular envelope in salt glands of Frankenia pauciflora. Protoplasma 99: 1–9

    Google Scholar 

  • Orgell WH (1955) The isolation of plant cuticles with pectic enzymes. Plant Physiol 30: 78–80

    PubMed  CAS  Google Scholar 

  • Parameswaren N, Wilhelm GE (1979) Micromorphology of naturally degraded beech and spruce barks. Eur J For Pathol 9: 103–112

    Google Scholar 

  • Parbery DG, Blakeman JP (1978) Effect of substances associated with leaf surfaces on appressorium formation by Colletotrichum acutatum. Trans Br Mycol Soc 70: 7–19

    Google Scholar 

  • Peterson CA, Peterson RL, Robards AW (1978) A correlated histochemical and ultrastructural study of the epidermis and hypodermis of onion roots. Protoplasma 96: 1–21

    Google Scholar 

  • Purdy RE, Kolattukudy PE (1973) Depolymerization of a hydroxy fatty acid biopolymer, cutin, by an extracellular enzyme from Fusarium solani f. pisi: isolation and some properties of the enzyme. Arch Biochem Biophys 159: 61–69

    PubMed  CAS  Google Scholar 

  • Purdy RE, Kolattukudy PE (1975 a) Hydrolysis of plant cuticle by plant pathogens. Purification, amino acid composition, and molecular weight of two isozymes of cutinase and a nonspecific esterase from Fusarium solani f. pisi. Biochemistry 14: 2824–2831

    PubMed  CAS  Google Scholar 

  • Purdy RE, Kolattukudy PE (1975 b) Hydrolysis of plant cuticle by plant pathogens. Properties of cutinase I, cutinase II, and a nonspecific esterase isolated from Fusarium solani pisi. Biochemistry 14: 2832–2840

    PubMed  CAS  Google Scholar 

  • Riley RG, Kolattukudy PE (1975) Evidence for covalently attached p-coumaric and ferulic acid in cutins and suberins. Plant Physiol 56: 650–654

    PubMed  CAS  Google Scholar 

  • Robards AW, Jackson SM, Clarkson DT, Sanderson J (1973) The structure of barley roots in relation to the transport of ions into the stele. Protoplasma 77: 291–311

    Google Scholar 

  • Royle DJ (1975) Structural features of resistance to plant diseases. In: Friend J, Threlfall DR (eds) Biochemical aspects of plant parasite relationships. Academic Press, New York, pp 161–194

    Google Scholar 

  • Schönherr J, Ziegler H (1980) Water permeability of Betula periderm. Planta 147: 345–354

    Google Scholar 

  • Scott MG, Peterson RL (1979) The root endodermis in Ranunculus acris. II. Histochemistry of the endodermis and the synthesis of phenolic compounds in roots. Can J Bot 57: 1063–1077

    CAS  Google Scholar 

  • Shaykh M, Soliday C, Kolattukudy PE (1977 a) Proof for the production of cutinase by Fusarium solani f. pisi during penetration into its host, Pisum sativum. Plant Physiol 60: 170–172

    PubMed  CAS  Google Scholar 

  • Shaykh M, Kolattukudy PE, Davis R (1977b) Production of a novel extracellular cutinase by the pollen and the chemical composition and ultrastructure of the stigma cuticle of nasturtium (Tropaeolum majus). Plant Physiol 60: 907–915

    Google Scholar 

  • Sitte P (1962) Zum Feinbau der Suberinschichten in Flaschenkork. Protoplasma 54: 555–559

    Google Scholar 

  • Sitte P (1975) Die Bedeutung der molekularen Lamellenbauweise von Korkzellwänden. Biochem Physiol Pflanz 168: 287–297

    Google Scholar 

  • Soliday CL, Kolattukudy PE (1976) Isolation and characterization of a cutinase from Fusarium roseum culmorum and its immunological comparison with cutinases from F. solani pisi. Arch Biochem Biophys 176: 334–343

    PubMed  CAS  Google Scholar 

  • Soliday CL, Kolattukudy PE (1977) Biosynthesis of cutin. ω-Hydroxylation of fatty acids by a microsomal preparation from germinating Vicia faba. Plant Physiol 59: 1116–1121

    PubMed  CAS  Google Scholar 

  • Soliday CL, Kolattukudy PE (1978) Midchain hydroxylation of 16-hydroxypalmitic acid by the endoplasmic reticulum fraction from germinating Vicia faba. Arch Biochem Biophys 188: 338–347

    PubMed  CAS  Google Scholar 

  • Soliday CL, Dean BB, Kolattukudy PE (1978) Suberization : inhibition by washing and stimulation by abscisic acid in potato disks and tissue culture. Plant Physiol 61: 170–174

    PubMed  CAS  Google Scholar 

  • Soliday CL, Kolattukudy PE, Davis RW (1979) Chemical and ultrastructural evidence that waxes associated with the suberin polymer constitute the major diffusion barrier to water vapor in potato tuber (Solanum tuberosum L) Planta 146: 607–614

    CAS  Google Scholar 

  • Swan EP (1968) Alkaline ethanolysis of extractive-free western red cedar bark. Tappi 51: 301–304

    CAS  Google Scholar 

  • Thomson WW, Platt-Aloia KA, Endress AG (1976) Ultrastructure of oil gland development in the leaf of Citrus sinensis L. Bot Gaz 137: 330–340

    Google Scholar 

  • Torrey JG, Clarkson DT (eds) (1975) The development and function of roots. Academic Press, New York

    Google Scholar 

  • Tulloch AP (1975) Chromatographic analysis of natural waxes. J Chromatograph Sci 13: 403–407

    CAS  Google Scholar 

  • Tulloch AP (1976) Chemistry of waxes of higher plants. In: Kolattukudy PE (ed) Chemistry and biochemistry of natural waxes. Elsevier, New York, pp 235–287

    Google Scholar 

  • van den Ende G, Linskens HF (1974) Cutinolytic enzymes in relation to pathogenesis. Annu Rev Phytopathol 12: 247–258

    Google Scholar 

  • von Wettstein-Knowles P (1974) Gene mutation in barley inhibiting the production and use of C26 chains in epicuticular wax formation. FEBS Lett 42: 187–191

    Google Scholar 

  • von Wettstein-Knowles P (1979) Genetics and biosynthesis of plant epicuticular waxes. In: Appleqvist L-Â, Liljenberg C (eds) Advances in the biochemistry and physiology of plant lipids. Elsevier, New York, pp 1–26

    Google Scholar 

  • Walton TJ, Kolattukudy PE (1972 a) Determination of the structures of cutin monomers by a novel depolymerization procedure and combined gas chromatography and mass spectrometry. Biochemistry 11: 1885–1897

    PubMed  CAS  Google Scholar 

  • Walton TJ, Kolattukudy PE (1972b) Enzymatic conversion of 16-hydroxypalmitic acid into 10,16-dihydroxypalmitic acid in Vicia faba epidermal extracts. Biochem Biophys Res Commun 46: 16–21

    PubMed  CAS  Google Scholar 

  • Wattendorf J (1969) Feinbau und Entwicklung der verkorkten Calciumoxalat-Kristallzellen in der Rinde von Larix decidua Mill. Z Pflanzenphysiol 60: 307–347

    Google Scholar 

  • Wattendorf J (1976) Ultrastructure of the suberized styloid cells in Agave leaves. Planta 128: 163–165

    Google Scholar 

  • Wilson LA, Sterling C (1976) Studies on the cuticle of tomato fruit I. Fine structure of the cuticle. Z Pflanzenphysiol 77: 359–371

    Google Scholar 

  • Zee S-Y, O’Brien TP (1970) Studies on the ontogeny of the pigment strand in the caryopsis of wheat. Aust J Biol Sci 23: 1153–1171

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Kolattukudy, P.E., Espelie, K.E., Soliday, C.L. (1981). Hydrophobic Layers Attached to Cell Walls. Cutin, Suberin and Associated Waxes. In: Tanner, W., Loewus, F.A. (eds) Plant Carbohydrates II. Encyclopedia of Plant Physiology, vol 13 / B. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68234-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68234-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68236-0

  • Online ISBN: 978-3-642-68234-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics