Skip to main content

Transport and Storage of Water

  • Chapter
Physiological Plant Ecology II

Part of the book series: Encyclopedia of Plant Physiology ((920,volume 12 / B))

Abstract

This chapter consists of two parts, the first part (by M.H.Z.) describes the structural basis of water conduction from roots to leaves. Xylem anatomy has been known for a long time. However, those aspects which concern water movement through the plant as a whole have remained rather elusive and therefore neglected. The problem was partly that we are dealing here with microscopic structures spread throughout the whole plant body. We need the microscope to look at the structure, but it is too myopic to give us the information we seek. Whole-plant-xylem anatomy is an essential factor in plant competition and survival. For example, a tree can afford to lose a branch by cavitation of the xylem water, but it could not survive extensive cavitation in the trunk. How does it control this? The answer to this question seems to be “clever” construction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baas P (1976) Some functional and adaptive aspects of vessel member morphology. Leiden Bot Ser 3:157–181

    Google Scholar 

  • Bailey IW (1933) The cambium and its derivative tissues. VIII. Structure, distribution and diagnostic significance of vestured pits in dicotyledons. J Arnold Arbor Harv Univ 14:259–283

    Google Scholar 

  • Barbour MG, Cunningham G, Oechel WC, Bamberg SA (1977) Growth and development, form and function. In: Mabry TJ, Hunziker JH, DiFeo DR (Jr) (eds) Creosote bush, biology and chemistry of Larrea in New World deserts. Dowden, Hutchinson and Ross, Stroudsburg, pp 48–91

    Google Scholar 

  • Bartholomew ET (1926) Internal decline of lemons III. Water deficit in lemon fruits caused by excessive leaf evaporation. Am J Bot 13:102–117

    Article  Google Scholar 

  • Braun HJ (1959) Die Vernetzung der Gefäße bei Populus. Z Bot 45:421–434

    Google Scholar 

  • Bristow JM (1975) The structure and function of roots in aquatic vascular plants. In: Torrey JG, Clarkson DT (eds) The development and function of roots. Academic Press, London New York, pp 221–236

    Google Scholar 

  • Carlquist S (1975) Ecological strategies of xylem evolution. Univ Cal Press. Berkeley Los Angeles London

    Google Scholar 

  • Chaney WR, Kozlowski TT (1971) Water transport in relation to expansion and contraction of leaves and fruits of Calamondin orange. J Hortic Sci 46:71–78

    Google Scholar 

  • Dixon HH (1914) Transpiration and the ascent of sap in plants. MacMillan, London

    Google Scholar 

  • Dobbs RC, Scott DRM (1971) Distribution of diurnal fluctuations in stem circumference of Douglas fir. Can J For Res 1:80–83

    Article  Google Scholar 

  • Friedrich J (1897) Über den Einfluß der Witterung auf den Baumzuwachs. Zentralbl gesamte Forstwes 23:471–495

    Google Scholar 

  • Gibbs RD (1958) Patterns of the seasonal water content of trees. In: Thimann KV (ed) The physiology of forest trees. Ronald, New York, pp 43–69

    Google Scholar 

  • Graaf Van der NA, Baas P (1974) Wood anatomical variation in relation to latitude and altitude. Blumea 22:101–121

    Google Scholar 

  • Hanscom Z, Ting IP (1978) Responses of succulents to plant water stress. Plant Physiol 61:327–330

    Article  PubMed  CAS  Google Scholar 

  • Hellkvist J, Richards GP, Jarvis PG (1974) Vertical gradients of water potential and tissue water relations in Sitka spruce trees measured with the pressure chamber. J Appl Ecol 11:637–668

    Article  Google Scholar 

  • Hinckley TM, Chambers JL, Brukerhoff DN, Roberts JE, Turner J (1974) Effect of mid-day shading on net assimilation rate, leaf surface resistance, branch diameter, and xylem potential in a white oak sapling. Can J For Res 4:296–300

    Article  Google Scholar 

  • Huber B (1928) Weitere quantitative Untersuchungen über das Wasserleitungssystem der Pflanzen. Jahrb Wiss Bot 67:877–959

    Google Scholar 

  • Huber B, Schmidt E (1936) Weitere thermo-elektrische Untersuchungen über den Transpirationsstrom der Bäume. (Further thermo-electric investigations on the transpiration stream in trees). Tharandter Forstl Jahrb 87:369–412 (1936) (Xerox copies of English translation available from National Translation Center, 35 West 33rd Street, Chicago, Illinois 60616)

    Google Scholar 

  • Jarvis PG (1975) Water transfer in plants. In: Vries de DA, Alfen van NK (eds) Heat and mass transfer in the environment of vegetation. Scripta, Washington DC, pp 369–394

    Google Scholar 

  • Jeje A, Zimmermann MH (1979) Resistance to water flow in xylem vessels. J Exp Bot 30:817–827

    Article  Google Scholar 

  • Klemm G (1956) Untersuchungen über den Transpirationswiderstand der Mesophyllmembranen und seine Bedeutung als Regulator für die stomatäre Transpiration. Planta 47:547–587

    Article  Google Scholar 

  • Klepper B, Browning VD, Taylor HM (1971) Stem diameter in relation to plant water status. Plant Physiol 48:683–685

    Article  PubMed  CAS  Google Scholar 

  • Kozlowski TT (1972) Shrinking and swelling of plant tissues. In: Kozlowski TT (ed) Water deficits and plant growth III. Plant responses in control of water balance. Academic Press, London New York, pp 1–64

    Google Scholar 

  • Kozlowski TT, Winget CH (1963) Patterns of water movement in forest trees. Bot Gaz 124:301–311

    Article  Google Scholar 

  • Kramer PJ (1937) The relation between the rate of transpiration and the rate of absorption of water in plants. Am J Bot 24:10–15

    Article  Google Scholar 

  • Kursanov AL (1957) The root system as an organ of metabolism. International conference of radioisotopes in scientific research, UNESCO/NS/RIC/128. Pergamon, New York London

    Google Scholar 

  • Larson PR, Isebrands JG (1978) Functional significance of the nodal constricted zone in Populus deltoides Bartr. Can J Bot 56:801–804

    Article  Google Scholar 

  • Lutz HJ (1952) Occurrence of clefts in the wood of living white spruce in Alaska. J For 50:99–102

    Google Scholar 

  • MacDougal DT, Overton JB, Smith GM (1929) The hydrostatic-pneumatic system of certain trees: movements of liquids and gases. Carnegie Inst Washington Publ 397

    Google Scholar 

  • Maximov NA (1929) The plant in relation to water. English translation. Yapp RH (ed). Allen and Unwin, London

    Google Scholar 

  • Milburn JA (1973a) Cavitation in Ricinus by acoustic detection: Induction in excised leaves by various factors. Planta 110:253–265

    Article  Google Scholar 

  • Milburn JA (1973 b) Cavitation studies on whole Ricinus plants by acoustic detection. Planta 112:333–342

    Article  Google Scholar 

  • Milburn JA (1979) Water flow in plants. Longman, London New York

    Google Scholar 

  • Milburn JA, Davis TA (1973) Role of pressure in xylem transport of coconut and other palms. Physiol Plant 29:415–420

    Article  Google Scholar 

  • Milburn JA, Johnson RPC (1966) The conduction of sap. II. Detections of vibrations produced by sap cavitation in Ricinus xylem. Planta 69:43–52

    Article  Google Scholar 

  • Milburn JA, McLaughlin ME (1974) Studies of cavitation in isolated vascular bundles and whole leaves of Plantago major L. New Phytol 73:861–871

    Article  Google Scholar 

  • Milburn JA, McLellan JA (1978) The detection of cavitation in plants at a cytological level. Proc Fed Eur Soc Plant Physiol, Edinburgh (Abstr) 369–370

    Google Scholar 

  • Molz FJ, Klepper B (1972) Radial propagation of water potential in stems. Agron J 64:469–473

    Article  Google Scholar 

  • Ohtani J, Ishida S (1976) Study on the pit of wood cells using scanning electron microscopy. 5. Vestured pits in Japanese dicotyledonous woods. Res Bull College Exp For Hokkaido Univ 33:407–436

    Google Scholar 

  • Passioura JB (1972) The effect of root geometry on the yield of wheat growing on stored water. Aust J Agric Res 23:745–752

    Article  Google Scholar 

  • Renner O (1915) Theoretisches und experimentelles zur Kohäsionstheorie der Wasserbewegung. Jahrb Wiss Bot 56:617–667

    Google Scholar 

  • Richter H (1976) The water status in the plant — experimental evidence. In: Lange OL, Kappen L, Schulze E-D (eds) Water and plant life. Ecol Stud. Vol 19. Springer, Berlin Heidelberg New York, pp 42–58

    Google Scholar 

  • Ritchie GA, Hinckley TM (1975) The pressure chamber as an instrument for ecological research. In: MacFadyen A (ed) Advances in ecological research Vol IX. Academic Press, London New York, pp 165–254

    Chapter  Google Scholar 

  • Running SW, Waring RH, Rydell RA (1975) Physiological control of water flux in conifers: a computer simulation model. Oecologia 18:1–18

    Google Scholar 

  • Sauter JJ (1974) Maple. In: McGraw-Hill yearbook of science and technology

    Google Scholar 

  • Scholander PF (1968) How mangroves desalinate seawater. Physiol Plant 21:251–261

    Article  CAS  Google Scholar 

  • Scholander PF, Hammel HT, Bradstreeet ED, Hemmingsen EA (1965) Sap pressures in vascular plants. Science 148:339–346

    Article  PubMed  CAS  Google Scholar 

  • Skene DS, Balodis V (1968) A study of vessel length in Eucalyptus obliqua L’Hérit. J Exp Bot 19:825–830

    Article  Google Scholar 

  • Spomer GG (1968) Sensors monitor tensions in transpiration streams of trees. Science 161:484–485

    Article  PubMed  CAS  Google Scholar 

  • Stansell JR, Klepper B, Browing VD, Taylor HM (1973) Plant water status in relation to clouds. Agron J 65:677–678

    Article  Google Scholar 

  • Tyree MT, Caldwell C, Dainty J (1975) The water relations of hemlock (Tsuga canadensis). V. The localization of resistances to bulk water flow. Can J Bot 53:1078–1084

    Article  Google Scholar 

  • Vité JP, Rudinsky JA (1959) The water-conducting system in conifers and their importance to the distribution of trunk-injected chemicals. Contrib Boyce Thompson Inst 20:27–38

    Google Scholar 

  • Waring RH, Franklin JF (1979) Evergreen coniferous forests of the Pacific northwest. Science 204:1380–1386

    Article  PubMed  CAS  Google Scholar 

  • Waring RH, Running SW (1976) Water uptake, storage and transpiration by conifers: A physiological model. In: Lange OL, Kappen L, Schulze E-D (eds) Water and plant life — problems and modern approaches. Ecol Stud Vol 19 Springer, Berlin Heidelberg New York, pp 189–202

    Google Scholar 

  • Waring RH, Running SW (1978) Sapwood water storage: Its contribution to transpiration and effect upon water conductance through the stems of old growth Douglas fir. Plant Cell Environ 1:131–140

    Article  Google Scholar 

  • West DW, Gaff DF (1976) Xylem cavitation in excised leaves of Malus sylvestris Mill. and measurement of leaf water status with the pressure chamber. Planta 129:15–18

    Article  Google Scholar 

  • Zimmermann MH (1971) Dicotyledonous wood structure made apparent by sequential sections. Film E 1735. Inst Wiss Film, Nonnenstieg 72, 34 Göttingen, Germany. (Film data and summary available as a reprint)

    Google Scholar 

  • Zimmermann MH (1978 a) Vessel ends and the disruption of water flow in plants. Phytopathology 68:253–255

    Article  Google Scholar 

  • Zimmermann MH (1978 b) Structural requirements for optimal water conduction in tree stems. In: Tomlinson PB, Zimmermann MH (eds) Tropical trees as living systems. Univ Press, Cambridge, pp 517–532

    Google Scholar 

  • Zimmermann MH (1978c) Hydraulic architecture of some diffuse-porous trees. Can J Bot 56:2286–2295

    Article  Google Scholar 

  • Zimmermann MH (1979) The discovery of tylose formation by a Viennese lady in 1845. Int Assoc Wood Anat Bull 2–3:51–56

    Google Scholar 

  • Zimmermann MH, Brown CL (1971) Trees: structure and function, 3rd edn 1977. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Zimmermann MH, Jeje A (1981) Vessel-length distribution in the stem of some American woody species. Can J Bot 59:1882–1892

    Article  Google Scholar 

  • Zimmermann MH, Tomlinson PB (1966) Analysis of complex vascular systems in plants: optical shuttle method. Science 152:72–73

    Article  PubMed  CAS  Google Scholar 

  • Zweypfennig RC VJ (1978) A hypothesis on the function of vestured pits. Int Assoc Wood Anat Bull 1:13–15

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Zimmermann, M.H., Milburn, J.A. (1982). Transport and Storage of Water. In: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (eds) Physiological Plant Ecology II. Encyclopedia of Plant Physiology, vol 12 / B. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68150-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68150-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68152-3

  • Online ISBN: 978-3-642-68150-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics